【题目】设函数,其中为自然对数的底数.
(Ⅰ)若曲线在轴上的截距为-1,且在点处的切线垂直于直线,求实数的值;
(Ⅱ)记的导函数为, 在区间上的最小值为,求的最大值.
科目:高中数学 来源: 题型:
【题目】(2017届高三第二次湖北八校文数试卷第16题)祖暅(公元前5~6世纪)是我国齐梁时代的数学家,是祖冲之的儿子.他提出了一条原理:“幂势既同,则积不容异.”这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等.设由椭圆所围成的平面图形绕轴旋转一周后,得一橄榄状的几何体
(如图)(称为椭球体),课本中介绍了应用祖暅原理求球体体积公式的做法,请类比此法,求出椭球体体积,其体积等于______ .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数是定义在上的奇函数.
(1)求的解析式;
(2)证明:函数在定义域上是增函数;
(3)设是否存在正实数使得函数在内的最小值为?若存在,求出的值;若存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A每次考试成绩合格的概率均为,科目B每次考试成绩合格的概率均为.假设各次考试成绩合格与否均互不影响.
(1)求他不需要补考就可获得证书的概率;
(2)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为,求的分布列及数学期望E.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业生产的乒乓球被指定为乒乓球比赛专用球.日前有关部门对某批产品进行了抽样检测,检测结果如下表所示:
抽取球数n | 50 | 100 | 200 | 500 | 1 000 | 2 000 |
优等品数m | 45 | 92 | 194 | 470 | 954 | 1 902 |
优等品频率 |
(1)计算表中乒乓球为优等品的频率.
(2)从这批乒乓球产品中任取一个,检测出为优等品的概率是多少?(结果保留到小数点后三位)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校团委组织了“文明出行,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(单位:分)整理后,得到如图频率分布直方图(其中分组区间为[40,50),[50,60),…,[90,100]).
(1)求成绩在[70,80)的频率和[70,80)这组在频率分布直方图中的纵坐标a的值;
(2)求这次考试平均分的估计值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为.
(1)求出圆的直角坐标方程;
(2)已知圆与轴相交于, 两点,直线: 关于点对称的直线为.若直线上存在点使得,求实数的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com