精英家教网 > 高中数学 > 题目详情
4.已知抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=225相切,双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程是y=$\sqrt{3}$x,它的一个焦点是该抛物线的焦点,则双曲线实轴长12.

分析 求出抛物线y2=2px(p>0)的准线方程,利用抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=225相切,可得p,利用双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程是y=$\sqrt{3}$x,它的一个焦点是该抛物线的焦点,$\frac{b}{a}$=$\sqrt{3}$,a2+b2=144,即可求出双曲线实轴长.

解答 解:抛物线y2=2px(p>0)的准线方程为x=-$\frac{p}{2}$,
∵抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=225相切,
∴3+$\frac{p}{2}$=15,∴p=24,
∵双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程是y=$\sqrt{3}$x,它的一个焦点是该抛物线的焦点,
∴$\frac{b}{a}$=$\sqrt{3}$,a2+b2=144,
∴a=6,b=6$\sqrt{3}$,
∴2a=12,
∴双曲线实轴长为12.
故答案为:12.

点评 本题考查双曲线实轴长,考查双曲线、抛物线的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图所示,正方形ABCD所在平面与圆O所在平面相交于CD,线段CD为圆O的弦,AE垂直于圆O所在平面,垂足E是圆O上异于C,D的点,AE=3,圆O的直径为9.
(Ⅰ)求证:平面ABCD⊥平面ADE; 
(Ⅱ)求三棱锥D-ABE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数y=f(x)在x=x0处的导数为11,则
$\underset{lim}{△x→0}$$\frac{f({x}_{0}-△x)-f({x}_{0})}{△x}$=-11;
$\underset{lim}{x→{x}_{0}}$$\frac{f(x)-f({x}_{0})}{2({x}_{0}-x)}$=-$\frac{11}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知在△ABC中,点A(-1,0),B(0,$\sqrt{3}$),C(1,-2).
(Ⅰ)求边AB上高所在直线的方程;
(Ⅱ)求△ABC的面积S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列命题错误的是(  )
A.“若x≠a且x≠b,则x2-(a+b)x+ab≠0”的否命题是“若x=a或x=b,则x2-(a+b)x+ab=0”
B.若p∧q为假命题,则p,q均为假命题
C.命题“?x0∈(0,+∞)lnx0=x0-1”的否定是“?x∈(0,+∞),lnx≠x-1
D.“x>2”是“$\frac{1}{x}$<$\frac{1}{2}$”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若{bn}满足约束条件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,则z=x+2y的最小值为(  )
A.3B.4C.7D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2cos2ωx+2$\sqrt{3}$sinωxcosωx-1,且f(x)的周期为2.
(Ⅰ)当$x∈[{-\frac{1}{2},\frac{1}{2}}]$时,求f(x)的最值;
(Ⅱ)若$f(\frac{α}{2π})=\frac{1}{4}$,求$cos(\frac{2π}{3}-α)$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知a,b,c分别为△ABC内角A,B,C的对边,且c•cosA-acosC=$\frac{2}{3}$b.
(1)其$\frac{tanA}{tanC}$的值;
(2)若tanA,tanB,tanC成等差数列,求$\frac{{a}^{2}-{b}^{2}-{c}^{2}}{bc}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知(x+a)2(x-1)3的展开式中x4的系数为1,则$\int_0^a{sinxdx=}$(  )
A.1-cos1B.1-cos2C.cos2-1D.cos1-1

查看答案和解析>>

同步练习册答案