精英家教网 > 高中数学 > 题目详情

选修4-5:不等式选讲

已知函数f(x)=|xa|.

(Ⅰ)当a=-1时,求不等式f(x)≥|x+1|+1的解集;

(Ⅱ)若不等式f(x)+f(-x)<2存在实数解,求实数a的取值范围.

解:

(Ⅰ) 当a=-1时,不等式f(x)≥|x+1|+1可化为|x-1|-|x+1|≥1

化简可得

解得x≤-1,或-1<x≤-

即所求解集为{x|x≤-}.                 …………………………………5分

(Ⅱ)令g(x)=f(x)+f(-x),则g(x)=|xa|+|xa|≥2|a|.

g(x)的最小值为2|a|.

依题意可得2>2|a|,即-1<a<1.

故实数a的取值范围是(-1,1). 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
设x,y,z∈(0,+∞),且x+y+z=1,求
1
x
+
4
y
+
9
z
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【选修4-5:不等式选讲】
求下列不等式的解集
(Ⅰ)|2x-1|-|x+3|>0
(Ⅱ)x+|2x-1|>3.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲:
设正有理数x是
2
的一个近似值,令y=1+
1
1+x

(Ⅰ)若x>
2
,求证:y<
2

(Ⅱ)比较y与x哪一个更接近于
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城模拟)(选修4-5:不等式选讲)
已知a,b,c为正数,且a2+a2+c2=14,试求a+2b+3c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乌鲁木齐一模)选修4-5:不等式选讲
设函数,f(x)=|x-1|+|x-2|.
(I)求证f(x)≥1;
(II)若f(x)=
a2+2
a2+1
成立,求x的取值范围.

查看答案和解析>>

同步练习册答案