精英家教网 > 高中数学 > 题目详情

有下列命题:

①函数y=f (-x+2)与y=f (x-2)的图象关于轴对称;

②若函数f(x)=,则,都有

③若函数f(x)=loga| x |在(0,+∞)上单调递增,则f(-2)> f(a+1);

④若函数 (x∈),则函数f(x)的最小值为-2.

其中真命题的序号是    .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题正确的有(  )
①对任意实数a、b,都有|a+b|+|a-b|≥2a
②函数y=x
1-x2
(0<x<1)的最大函数值为
1
2

③对a∈R,不等式|x|<a的解集可表示为{x|-a<x<a};
④若AB≠0,则lg
|A|+|B|
2
lg|A|+lg|B|
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•遂宁二模)设函数f(x)的定义域为D,若存在非零实数,使得对于任意x∈M(M⊆D),有x+l∈D,f(x+l)≥f(x),则称f(x)为M上的l高调函数,现给出下列命题:
①函数f(x)=(
12
)x
为R上的1高调函数;
②函数f (x)=sin 2x为R上的高调函数;
③如果定义域是[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是[2,+∞);
④如果定义域为R的函教f (x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是[一1,1].
其中正确的命题是
②③④
②③④
 (写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源:2014届安徽省高三上学期第一次月考理科数学试卷(解析版) 题型:填空题

函数的定义域为,若时总有,则称为单函

数.例如,函数是单函数.下列命题:①函数是单函数;②函数是单函数;③若为单函数,,则;④函数在定义域内某个区间上具有单调性,则一定是单函数.其中的真命题是_________(写出所有真命题的编号).

 

查看答案和解析>>

科目:高中数学 来源:2009-2010学年四川省雅安市高二(上)期末数学试卷(理科)(解析版) 题型:选择题

下列命题正确的有( )
①对任意实数a、b,都有|a+b|+|a-b|≥2a
②函数y=x(0<x<1)的最大函数值为
③对a∈R,不等式|x|<a的解集可表示为{x|-a<x<a};
④若AB≠0,则lg
A.①②④
B.③④
C.②③
D.①④

查看答案和解析>>

科目:高中数学 来源:2011年四川省遂宁市高考数学二模试卷(理科)(解析版) 题型:解答题

设函数f(x)的定义域为D,若存在非零实数,使得对于任意x∈M(M⊆D),有x+l∈D,f(x+l)≥f(x),则称f(x)为M上的l高调函数,现给出下列命题:
①函数为R上的1高调函数;
②函数f (x)=sin 2x为R上的高调函数;
③如果定义域是[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是[2,+∞);
④如果定义域为R的函教f (x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是[一1,1].
其中正确的命题是     (写出所有正确命题的序号).

查看答案和解析>>

同步练习册答案