精英家教网 > 高中数学 > 题目详情
(2012•安徽模拟)函数f(x)=Asin(ωx+φ)(A>0,ω>0)在x=1和x=-1处分别取得最大值和最小值,且对于任意x1x2∈[-1,1],x1x2,都有
f(x 1)-f(x2)
x1-x2
>0
,则(  )
分析:利用已知条件判断函数的单调性,求出函数的最值,推出函数的周期,即可得到正确选项.
解答:解:因为函数f(x)=Asin(ωx+φ)(A>0,ω>0)在x=1和x=-1处分别取得最大值和最小值,
且对于任意x1x2∈[-1,1],x1x2,都有
f(x 1)-f(x2)
x1-x2
>0

即函数y=f(x)在[-1,1]上是单调增函数,
∴f(x+1)在x=0和x=-2处分别取得最大值和最小值,即函数的周期是T=2×[0-(-2)]=4,
函数f(x)=Asin(ωx+φ)(A>0,ω>0)在x=1和x=-1处分别取得最大值和最小值,
所以φ=0,函数f(x)=Asinωx是奇函数,x=1是对称轴,
函数向左平移1单位,得到函数f(x+1),它的对称轴是y轴,
∴函数y=f(x+1)一定是周期为4的偶函数.
故选A.
点评:本题考查函数的单调性以及函数的周期的求法,考查逻辑推理能力计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•安徽模拟)在复平面内,复数z=
1+i
i-2
对应的点位于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)定义在R上的奇函数f(x)满足:x≤0时f(x)=ax+b(a>0且a≠1),f(1)=
1
2
,则f(2)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)(理)若变量x,y满足约束条件
x+y-3≤0
x-y+1≥0
y≥1
,则z=|y-2x|的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)下列说法不正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知f(x)=2
3
sinx+
sin2x
sinx

(1)求f(x)的最大值,及当取最大值时x的取值集合.
(2)在三角形ABC中,a,b,c分别是角A,B,C所对的边,对定义域内任意x,有f(x)≤f(A),若a=
3
,求
AB
AC
的最大值.

查看答案和解析>>

同步练习册答案