精英家教网 > 高中数学 > 题目详情
如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,AD垂直于AB和DC,侧棱SA底面ABCD,且SA=2,AD=DC=1

(1)若点E在SD上,且证明:平面
(2)若三棱锥S-ABC的体积,求面SAD与面SBC所成二面角的正弦值的大小
(1)详见解析;(2)

试题分析:(1)由于侧棱底面侧面从而,又因为,所以平面(2) 由三棱锥S-ABC的体积易得由于两两互相垂直,故可以为原点建立空间直角坐标系,利用向量便可得面SAD与面SBC所成二面角的正弦值的大小
试题解析:(1)证明:侧棱底面底面
                                               1分
底面是直角梯形,垂直于
,又
侧面,                           3分
侧面

平面                     5分
(2) 连结,底面是直角梯形,垂直于,
,,设,则三棱锥,                                7分
如图建系,

,由题意平面的一个法向量为,不妨设平面的一个法向量为,则由,不妨令,则                  10分
 ,                                     11分
设面与面所成二面角为,则           12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,平面平面,是以为斜边的等腰直角三角形,分别为,,的中点,,.

(1)设的中点,证明:平面;
(2)证明:在内存在一点,使平面,并求点,的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角梯形中,,如图,把沿翻折,使得平面平面

(1)求证:
(2)若点为线段中点,求点到平面的距离;
(3)在线段上是否存在点,使得与平面所成角为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图(1),四边形ABCD中,E是BC的中点,DB=2,DC=1,BC=,AB=AD=.将图(1)沿直线BD折起,使得二面角A­BD­C为60°,如图(2).

(1)求证:AE⊥平面BDC;
(2)求直线AC与平面ABD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC­A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,A1AMCC1的中点.

(1)求证:A1BAM
(2)求二面角B­AM­C的平面角的大小..

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体ABCD-A1B1C1D1中,二面角A1-BD-C1的余弦值为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以A(4,3,1),B(7,1,2),C(5,2,3)为顶点的三角形形状为             .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点B是点A(3,7,-4)在xOz平面上的射影,则|OB|等于(  )
A.(9,0,16)B.25
C.5D.13

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知向量a=(2,-3,5)与向量b=(3,λ,)平行,则λ=(  )
A.B.C.-D.-

查看答案和解析>>

同步练习册答案