精英家教网 > 高中数学 > 题目详情
(2012•房山区一模)下列函数中,既是偶函数又在(0,+∞)单调递增的函数是(  )
分析:根据题意,将x用-x代替判断解析式的情况利用偶函数的定义判断出为偶函数,然后根据反比例函数、对数函数、二次函数、三角数函数进行判定单调性即可得到结论.
解答:解:对于y=-
1
x
函数的定义域为{x|x≠0},f(-x)=-f(x),则该函数为奇函数,A不合题意
对于y=e|x|函数的定义域为x∈R,将x用-x代替函数的解析式不变,
所以y=e|x|是偶函数,但函数y=e|x|在(0,+∞)上单调单调递增,B符合题意
对于y=-x2+3函数的定义域为x∈R,将x用-x代替函数的解析式不变,
所以y=-x2+3是偶函数,但函数y=-x2+3在(0,+∞)上单调单调递减,C不合题意
对于y=cosx函数的定义域为x∈R,将x用-x代替函数的解析式不变,
所以y=cosx是偶函数,但函数y=cosx在(0,+∞)上不单调,D不合题意
故选B.
点评:本题主要考查了奇函数、偶函数的定义,以及常见函数的单调性的判定,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•房山区一模)已知△ABC中,内角A,B,C的对边分别为a,b,c,且cosA=
2
5
5
cosB=
3
10
10

(Ⅰ)求cos(A+B)的值;
(Ⅱ)设a=
10
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区一模)如果在一周内安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余两所学校均只参观一天,那么不同的安排方法共有
120
120
种.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区一模)一个几何体的三视图如图所示,则这个几何体的体积为
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区一模)已知椭圆G的中心在坐标原点,焦点在x轴上,一个顶点为A(0,-1),离心率为
6
3

(I)求椭圆G的方程;
(II)设直线y=kx+m与椭圆相交于不同的两点M,N.当|AM|=|AN|时,求m的取值范围.

查看答案和解析>>

同步练习册答案