精英家教网 > 高中数学 > 题目详情

已知函数为常数).
(Ⅰ)求函数的最小正周期;
(Ⅱ)若时,的最小值为 ,求a的值.

(Ⅰ)的最小正周期;(Ⅱ)

解析试题分析:(Ⅰ)求函数的最小正周期,由函数为常数),通过三角恒等变化,把它转化为一个角的一个三角函数,从而可求函数的最小正周期;(Ⅱ)利用三角函数的图像,及,可求出的最小值,让最小值等于,可求出a的值.
试题解析:(Ⅰ)
的最小正周期 
(Ⅱ) 时,
时,取得最小值
考点:三角函数的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的最大值;
(2)若直线是函数的对称轴,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角A、B、C的对边分别为a、b、c,且角A、B、C成等差教列.
(I)若,求边c的值;
(II)设,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数(A>0,>0)的最小值为-1,其图象相邻两个对称中心之间的距离为.
(1)求函数的解析式
(2)设,则,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商品一年内出厂价格在6元的基础上按月份随正弦曲线波动,已知3月份达到最高价格8元,7月份价格最低为4元.该商品在商店内的销售价格在8元基础上按月份随正弦曲线波动,5月份销售价格最高为10元,9月份销售价最低为6元.
(1)试分别建立出厂价格、销售价格的模型,并分别求出函数解析式;
(2)假设商店每月购进这种商品m件,且当月销完,试写出该商品的月利润函数;
(3)求该商店月利润的最大值.(定义运算

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象的一部分如图所示.

(1)求函数的解析式;
(2)当时,求函数的最大值与最小值及相应的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,分别是内角的对边,且,若
(1)求的大小;
(2)设的面积, 求的最大值及此时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

ABC中,内角A,B,C的对边分别为a,b,c.
已知.
(Ⅰ)求的值;  (Ⅱ)若,求ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的单调递增区间;
(Ⅱ)设函数,求的值域.

查看答案和解析>>

同步练习册答案