精英家教网 > 高中数学 > 题目详情
(本题15分)已知点是椭圆E)上一点,F1F2分别是椭圆E的左、右焦点,O是坐标原点,PF1x轴.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设A、B是椭圆E上两个动点,).求证:直线AB的斜率为定值;
(Ⅲ)在(Ⅱ)的条件下,当△PAB面积取得最大值时,求λ的值.
(1)  (2)根据已知的向量的坐标关系,结合点差法来得到直线的斜率。
(3)

试题分析:解:(Ⅰ)∵PF1x轴,
F1(-1,0),c=1,F2(1,0),
|PF2|=,2a=|PF1|+|PF2|=4,a=2,b2=3,
椭圆E的方程为:;…………………4分
(Ⅱ)设Ax1y1)、Bx2y2),由
x1+1,y1-)+(x2+1,y2-)=(1,- ),
所以x1+x2=-2y1+y2=(2-………①

两式相减得3(x1+x2)(x1-x2)+ 4(y1+y2)(y1-y2)=0………..②
以①式代入可得AB的斜率k=为定值; ……………9分
(Ⅲ)设直线AB的方程为y=x+t
联立消去y并整理得 x2+tx+t2-3=0,   △=3(4-t2),
AB|=
P到直线AB的距离为d=,
PAB的面积为S=|ABd=, ………10分
ft)=S2=t4-4t3+16t-16) (-2<t<2),
f’(t)=-3(t3-3t2+4)=-3(t+1)(t-2)2,由f’(t)=0及-2<t<2得t=-1.
t∈(-2,-1)时,f’(t)>0,当t∈(-1,2)时,f’(t)<0,ft)=-1时取得最大值
所以S的最大值为.此时x1+x2=-t=1=-2,=3. ………………15分
点评:解析几何中的圆锥曲线的求解,一般运用待定系数法来求解,同时运用设而不求的思想来研究直线与椭圆的位置关系,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)己知是椭圆)上的三点,其中点的坐标为过椭圆的中心,且
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线(斜率存在时)与椭圆交于两点,设为椭圆 轴负半轴的交点,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在椭圆+上,为焦点 且,则的面积为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设已知椭圆=1(a>b>0)的一个焦点是圆x2+y2-6x+8=0的圆心,且短轴长为8,则椭圆的左顶点为(   )
A.(-3,0)B.(-4,0)C.(-10,0)D.(-5,0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知函数(其中为常数)的图像经过点A、B是函数图像上的点,正半轴上的点.
(1) 求的解析式;
(2) 设为坐标原点,是一系列正三角形,记它们的边长是,求数列的通项公式;
(3) 在(2)的条件下,数列满足,记的前项和为,证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知m>1,直线,椭圆C:分别为椭圆C的左、右焦点.
(Ⅰ)当直线过右焦点时,求直线的方程;
(Ⅱ)设直线与椭圆C交于A、B两点,△A、△B的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

我国发射的“神舟七号”飞船的运行轨道是以地球的中心为一个焦点的椭圆,近地点A距地面为千米,远地点B距地面为千米,地球半径为千米,则飞船运行轨道的短轴长为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图椭圆的两个焦点为和顶点构成面积为32的正方形.

(1)求此时椭圆的方程;
(2)设斜率为的直线与椭圆相交于不同的两点的中点,且. 问:两点能否关于直线对称. 若能,求出的取值范围;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知椭圆C的对称轴为坐标轴,且短轴长为4,离心率为
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的焦点在y轴上,斜率为1的直线l与C相交于A,B两点,且
,求直线l的方程。

查看答案和解析>>

同步练习册答案