精英家教网 > 高中数学 > 题目详情
(本小题满分13分)
已知椭圆C的对称轴为坐标轴,且短轴长为4,离心率为
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的焦点在y轴上,斜率为1的直线l与C相交于A,B两点,且
,求直线l的方程。
(Ⅰ)(Ⅱ)

试题分析:(Ⅰ)设椭圆C的长半轴长为a(a>0),短半轴长为b(b>0),
则2b=4,。            2分
解得a=4,b=2。                      3分
因为椭圆C的对称轴为坐标轴,
所以椭圆C的方程为标准方程,且为。     5分
(Ⅱ)设直线l的方程为,A(x1,y1),B(x2,y2),     6分
由方程组,消去y,
,      7分
由题意,得, 8分
,  9分
因为
, 11分
所以,解得m=±2,
验证知△>0成立,
所以直线l的方程为。      13分
点评:直线与椭圆相交问题常借助与韦达定理设而不求简化计算,本题涉及到的弦长公式,其中k是直线斜率,是两交点横坐标
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题15分)已知点是椭圆E)上一点,F1F2分别是椭圆E的左、右焦点,O是坐标原点,PF1x轴.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设A、B是椭圆E上两个动点,).求证:直线AB的斜率为定值;
(Ⅲ)在(Ⅱ)的条件下,当△PAB面积取得最大值时,求λ的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:在面积为1的DPMN中,tanÐPMN=,tanÐMNP=-2,试建立适当的坐标系,求以MN为焦点且过点P的椭圆方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图,已知直线OP1OP2为双曲线E:的渐近线,△P1OP2的面积为,在双曲线E上存在点P为线段P1P2的一个三等分点,且双曲线E的离心率为.

(1)若P1P2点的横坐标分别为x1x,则x1x2之间满足怎样的关系?并证明你的结论;
(2)求双曲线E的方程;
(3)设双曲线E上的动点,两焦点,若为钝角,求点横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
设椭圆)的两个焦点是),且椭圆与圆有公共点.
(1)求的取值范围;
(2)若椭圆上的点到焦点的最短距离为,求椭圆的方程;
(3)对(2)中的椭圆,直线)与交于不同的两点,若线段的垂直平分线恒过点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在△ABC中,角A,B,C的对边分别a,b,c,若.则直线被圆所截得的弦长为       

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)已知椭圆的离心率为为椭圆的右焦点,两点在椭圆上,且,定点
(1)若时,有,求椭圆的方程;
(2)在条件(1)所确定的椭圆下,当动直线斜率为k,且设时,试求关于S的函数表达式f(s)的最大值,以及此时两点所在的直线方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知方程 表示焦点在y轴上的椭圆,则k的取值范围是(   )
A.6<k<9B.k>3C.k>9D.k<3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若点到点的距离比它到直线的距离少1,则动点的轨迹方程是    __________.

查看答案和解析>>

同步练习册答案