精英家教网 > 高中数学 > 题目详情
某营养师要为某个儿童预定午餐和晚餐,已知一个单位的午餐和晚餐所含的蛋白质和维生素C如下表:
蛋白质 维生素C
午餐 6 6
晚餐 6 10
该儿童这两餐需要的营养中至少42个单位的蛋白质和54个单位的维生素C,如果一个单位的午餐、晚餐的费用分别是3元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?
考点:简单线性规划的应用
专题:不等式的解法及应用
分析:根据条件写出约束条件和目标函数,利用线性规划的知识即可得到结论.
解答: 解:设应当为该儿童分别预订x个单位的午餐和y个单位晚餐,花费为z元,
则约束条件为
6x+6y≥42
6x+10y≥54

x+y≥7
3x+5y≥27

目标函数为z=3x+4y,
作出可行域如图:
平移直线3x+4y=0,
则由平移可知当直线经过点M时,直线的截距最小,此时z最小,
x+y=7
3x+5y=27
,解得最优解为M(4,3),
此时zmin=4×3+3×4=24,
答:应当为该儿童分别预订4个单位的午餐和3个单位晚餐.
点评:本题主要考查生活中的优化问题,利用线性规划的知识进行求解是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在高台跳水运动中,运动员相对于水面的高度h(m)与起跳后的时间t(s)存在函数关系h(t)=-4.9t2+6.5t+10,则瞬时速度为0m/s的时刻是(  )
A、
65
98
s
B、
65
49
s
C、
98
65
s
D、
49
65
s

查看答案和解析>>

科目:高中数学 来源: 题型:

已知c>0,且c≠1.设p:函数y=cx在上单调递减;q:函数f(x)=x2-2cx+1在(
1
2
,+∞)上为增函数.
(1)若p为真,¬q为假,求实数c的取值范围.
(2)若“p且q”为假,“p或q”为真,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两地相距1000km,货车从甲地匀速行驶到乙地,速度不得超过80km/h,已知货车每小时的运输成本(单位:元)由可变成本和固定成本组成,可变成本是速度平方的
1
4
倍,固定成本为a元.
(1)将全程运输成本y(元)表示为速度v(km/h)的函数,并指出这个函数的定义域;
(2)为了使全程运输成本最小,货车应以多大的速度行驶?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|-4<x<2},B={x|x<-5或x>1},C={x|m-1<x<m+1}.
(1)求A∪B,A∩(∁RB);
(2)若B∩C=∅,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项的和Sn与an的关系是Sn=-an+1-
1
2n
,n∈N*
(1)求证:数列{2nan}为等差数列,并求数列{an}的通项;
(2)求数列{Sn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
1+tan(π+α)
1+tan(2π-α)
=3+2
2
,求cos2(π-α)+sin(
2
+α)cos(
π
2
+α)
+2sin2(α-π)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均不相等的等差数列{an}的前四项和为14,且a1,a3,a7恰为等比数列{bn}的前三项.
(1)分别求数列{an},{bn}的前n项和Sn,Tn
(2)记数列{anbn}的前n项和为Kn,设cn=
SnTn
Kn
,求证:cn+1>cn(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1的棱长为1,E为A1B1的中点,则下列五个命题:
①点E到平面ABC1D1的距离为 
1
2

②直线BC与平面ABC1D1所成的角为45°;
③空间四边形ABCD1在正方体六个面内形成的六个射影平面图形,其中面积最小值是 
1
2
; 
④AE与DC1所成的角的余弦值为 
3
10
10

⑤二面角A-BD1-C的大小为 
6

其中真命题是
 
.(写出所有真命题的序号)

查看答案和解析>>

同步练习册答案