精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ln(1+x2)+ax.(a≤0).
(Ⅰ)若f(x)在x=0处取得极值,求a的值;
(Ⅱ)讨论f(x)的单调性;
(Ⅲ)证明:(1+
1
22
)(1+
1
42
)(1+
1
82
)…(1+
1
22n
)<e(n∈N*)
(Ⅰ)f′(x)=
2x
1+x2
+a
,因为x=0是f(x)的一个极值点,∴f'(0)=0,∴a=0验证知a=0符合条件.------------2分
(Ⅱ)因为f′(x)=
2x
1+x2
+a=
ax2+2x+a
1+x2

1)若a=0时,∴f(x)在(0,+∞)单调递增,在(-∞,0)单调递减;
2)若
a<0
△≤0
得,当a≤-1时,f′(x)≤0对x∈R恒成立
,∴f(x)在R上单调递减;
3)若-1<a<0时,由f'(x)>0得ax2+2x+a>0∴
-1+
1-a2
a
<x<
-1-
1-a2
a
f(x)在(
-1+
1-a2
a
-1-
1-a2
a
)上单调递增

(-∞,
-1+
1-a2
a
)和(
-1-
1-a2
a
,+∞)上单调递减

综上所述,若a≤-1时,f(x)在(-∞,+∞)上单调递减,
若-1<a<0时,f(x)在(
-1+
1-a2
a
-1-
1-a2
a
)上单调递增
(-∞,
-1+
1-a2
a
)和(
-1-
1-a2
a
,+∞)上单调递减

若a=0时,f(x)在(0,+∞)单调递增,在(-∞,0)单调递减.---------8分
(Ⅲ)由(Ⅱ)知,当a=-1时,f(x)在(-∞,+∞)单调递减
当x∈(0,+∞)时,由f(x)<f(0)=0∴ln(1+x2)<x
ln[(1+
1
22
)(1+
1
42
)(1+
1
82
)…(1+
1
22n
)]=ln(1+
1
22
)+ln(1+
1
42
)+…+ln(1+
1
22n
)
1
2
+
1
4
+
1
8
+…+
1
2n
=
1
2
(1-
1
2n
)
1-
1
2
=(1-
1
2n
)<1

(1+
1
22
)(1+
1
42
)…(1+
1
22n
)<e
---------------------13分
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案