精英家教网 > 高中数学 > 题目详情
函数f(x)=-x2+2ax+1-a在区间[0,1]上有最大值2,求实数a的值.
分析:先求对称轴,比较对称轴和区间的关系,利用开口向下的二次函数离对称轴越近函数值越大来解题.
解答:解:对称轴x=a,
当a<0时,[0,1]是f(x)的递减区间,f(x)max=f(0)=1-a=2
∴a=-1;
当a>1时,,[0,1]是f(x)的递增区间,f(x)max=f(1)=a=2
∴a=2;
当0≤a≤1时,f(x)max=f(a)=)=a2-a+1=2,
解得a=
5
2
,与0≤a≤1矛盾;
所以a=-1或a=2.
点评:此题是个中档题.本题考查了二次函数在闭区间上的最值问题.关于不定解析式的二次函数在固定闭区间上的最值问题,一般是根据对称轴和闭区间的位置关系来进行分类讨论,如轴在区间左边,轴在区间右边,轴在区间中间,最后在综合归纳得出所需结论
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-ax+4+2lnx
(I)当a=5时,求f(x)的单调递减函数;
(Ⅱ)设直线l是曲线y=f(x)的切线,若l的斜率存在最小值-2,求a的值,并求取得最小斜率时切线l的方程;
(Ⅲ)若f(x)分别在x1、x2(x1≠x2)处取得极值,求证:f(x1)+f(x2)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2+2x在[m,n]上的值域是[-1,3],则m+n所成的集合是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-2x-3的图象为曲线C,点P(0,-3).
(1)求过点P且与曲线C相切的直线的斜率;
(2)求函数g(x)=f(x2)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=-x2+2x,x∈(0,3]的值域为
[-3,1]
[-3,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+
12
x
+lnx的导函数为f′(x),则f′(2)=
5
5

查看答案和解析>>

同步练习册答案