精英家教网 > 高中数学 > 题目详情
已知△ABC的三边长分别为a,b,c,其面积为S,则△ABC的内切圆的半径r=
2Sa+b+c
.这是一道平面几何题,请用类比推理方法,猜测对空间四面体ABCD存在什么类似结论?
 
分析:根据平面与空间之间的类比推理,由点类比点或直线,由直线 类比 直线或平面,由内切圆类比内切球,由平面图形面积类比立体图形的体积,结合求三角形的面积的方法类比求四面体的体积即可.
解答:精英家教网解:设四面体的内切球的球心为O,
则球心O到四个面的距离都是R,
所以四面体的体积等于以O为顶点,
分别以四个面为底面的4个三棱锥体积的和.
则四面体的体积为 V四面体A-BCD=
1
3
(S1+S2+S3+S4

猜想:四面体ABCD的各表面面积分别为S1,S2,S3,S4,其体积为V,
则四面体ABCD的内切球半径r=
3V
S1+S2+S3+S4

故答案为:r=
3V
S1+S2+S3+S4
点评:本题主要考查类比推理.类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC的三边长a,b,c满足b+2c≤3a,c+2a≤3b,则
ba
的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三边长为a、b、c,满足直线ax+by+c=0与圆x2+y2=1相离,则△ABC是(  )
A、锐角三角形B、直角三角形C、钝角三角形D、以上情况都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三边长为三个连续的正整数,且最大角为钝角,则最长边长为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三边长AC=3,BC=4,AB=5,P为AB边上任意一点,则
CP
•(
BA
-
BC
)
的最大值为
 

查看答案和解析>>

同步练习册答案