精英家教网 > 高中数学 > 题目详情
若函数处取极值,则         
3

试题分析:=.因为f(x)在1处取极值,所以1是f′(x)=0的根,将x=1代入得a=3.故答案为3 .
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,求函数的单调增区间;
(2)当时,求函数在区间上的最小值;
(3)记函数图象为曲线,设点是曲线上不同的两点,点为线段的中点,过点轴的垂线交曲线于点.试问:曲线在点处的切线是否平行于直线?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求曲线在点处的切线方程;
(2)若对于任意的,都有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若直线恰好为曲线的切线时,求实数的值;
(2)当时(其中无理数),恒成立,试确定实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中是常数.
(1)当时,求曲线在点处的切线方程;
(2)若存在实数,使得关于的方程上有两个不相等的实数根,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设D是函数定义域内的一个子区间,若存在,使,则称的一个“次不动点”,也称在区间D上存在次不动点,若函数在区间上存在次不动点,则实数a的取值范围是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中m∈R.
(1)若0<m≤2,试判断函数f (x)=f1 (x)+f2 (x)的单调性,并证明你的结论;
(2)设函数 若对任意大于等于2的实数x1,总存在唯一的小于2的实数x2,使得g (x1) =" g" (x2) 成立,试确定实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设直线与函数的图象分别交于M、N两点,则当MN达到最小时t的值为     

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三次函数的图象如图所示,则(      )
A.-1B.2C.-5D.-3

查看答案和解析>>

同步练习册答案