精英家教网 > 高中数学 > 题目详情
求动圆圆心M的轨迹方程:与⊙C1x2+(y-1)2=1和⊙C2x2+(y+1)2=4都外切。

答案:
解析:

解:设动圆M的半径为r

∵⊙M与⊙C1、⊙C2都外切

∴|MC1|=r+1,|MC2|=r+2,

|MC2|-|MC1|=1

∴点M的轨迹是以C2C1为焦点的双曲线的上支,且有:

a=,c=1,b2=c2a2=

∴所求的双曲线方程为:

4y2=1(y)。


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2-6x-91=0内切,求动圆圆心M的轨迹方程,并说明它是什么样的曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动圆M和圆C1:(x+1)2+y2=9内切,并和圆C2:(x-1)2+y2=1外切.
(1)求动圆圆心M的轨迹方程;
(2)过圆C1和圆C2的圆心分别作直线交(1)中曲线于点B、D和A、C,且AC⊥BD,垂足为P(x0,y0),设点E(-2,-1),求|PE|的最大值;
(3)求四边形ABCD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•静安区二模)已知动圆过定点F(
1
2
,0)
,且与定直线l:x=-
1
2
相切.
(1)求动圆圆心M的轨迹方程;
(2)设点O为坐标原点,P、Q两点在动点M的轨迹上,且满足OP⊥OQ,OP=OQ,求等腰直角三角形POQ的面积;
(3)设一直线l与动点M的轨迹交于R、S两点,若
OR
OS
=-1且2
2
≤|RS|<4
14
,试求该直线l的倾斜角的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•静安区二模)已知动圆过定点F(
1
2
,0)
,且与定直线l:x=-
1
2
相切.
(1)求动圆圆心M的轨迹方程;
(2)设点O为坐标原点,P、Q两点在动点M的轨迹上,且满足OP⊥OQ,OP=OQ,求等腰直角三角形POQ的面积;
(3)设过点F(
1
2
,0)
的直线l与动点M的轨迹交于R、S相异两点,试求△ROS面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•洛阳一模)过定点A(1,0)的动圆M与定圆B:(x+1)2+y2=8内切(圆心为B).
(1)求动圆圆心M的轨迹方程;
(2)设点N(0,1),是否存在直线l交M的轨迹于P,Q两点,使得△NPQ的垂心恰为点A.若存在,求出该直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案