(本题满分12分)已知如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,过D与PB垂直的平面分别交PB、PC于F、E.
(1)求证:DE⊥PC;
(2)当PA//平面EDB时,求二面角E—BD—C的正切值.
(本题满分12分)(1)证明:
平面DEF
平面ABCD 又
………4分
从而DE⊥平面PBC
………………6分
(2)解:连AC交BD于O,连EO,由PA//平面EDB
及平面EDB∩平面PAC于EO
知PA//EO ………………7分
是正方形ABCD的对角线AC的中点
为PC的中点
又
……………………………8分
设PD=DC=a,取DC的中点H,作HG//CO交BD于G,
则HG⊥DB,EH//PD
平面CDB。
由三垂线定理知EG⊥BD
故
为二面角E—BD—C的一个平面角。 ………………10分
易求得
![]()
∴二面角E—BD—C的正切值为
(用向量法做参考给分) …………12分
科目:高中数学 来源: 题型:
| π | 2 |
查看答案和解析>>
科目:高中数学 来源:安徽省合肥一中、六中、一六八中学2010-2011学年高二下学期期末联考数学(理 题型:解答题
(本题满分12分)已知△
的三个内角
、
、
所对的边分别为
、
、
.
,且
.(1)求
的大小;(2)若
.求
.
查看答案和解析>>
科目:高中数学 来源:2011届本溪县高二暑期补课阶段考试数学卷 题型:解答题
(本题满分12分)已知各项均为正数的数列
,
的等比中项。
(1)求证:数列
是等差数列;(2)若
的前n项和为Tn,求Tn。
查看答案和解析>>
科目:高中数学 来源:2010-2011学年广东省揭阳市高三调研检测数学理卷 题型:解答题
(本题满分12分)
已知椭圆
:
的长轴长是短轴长的
倍,
,
是它的左,右焦点.
(1)若
,且
,
,求
、
的坐标;
(2)在(1)的条件下,过动点
作以
为圆心、以1为半径的圆的切线
(
是切点),且使
,求动点
的轨迹方程.
查看答案和解析>>
科目:高中数学 来源:2010年辽宁省高二上学期10月月考理科数学卷 题型:解答题
(本题满分12分)已知椭圆
的长轴,短轴端点分别是A,B,从椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点,向量
与
是共线向量
(1)求椭圆的离心率
(2)设Q是椭圆上任意一点,
分别是左右焦点,求
的取值范围
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com