精英家教网 > 高中数学 > 题目详情
18.如图,在正方体ABCD-A1B1C1D1中,E、F分别是CD、A1D1中点.
(1)求证:AE⊥BF;
(2)求证:平面A1BF⊥平面AB1E;
(3)棱CC1上是否存在点P使AP⊥BF?若存在,确定点P位置;若不存在,说明理由.

分析 (1)取AD中点G,连接FG、BG,通过证明⊥平面BFG,证明AE⊥BF;
(2)连A1B,证明线线垂直,从而证明BF⊥平面AB1E,即可证明平面A1BF⊥平面AB1E;
(3)存在,取CC1中点P,连接EP、C1D,说明AP?平面AB1E,利用BF⊥平面AB1E,推出AP⊥BF.

解答 (1)证明:取AD中点G,连接FG、BG,则FG⊥AE,
又∵△BAG≌△ADE,∴∠ABG=∠DAE,
∴AE⊥BG,又∵BG∩FG=G,
∴AE⊥平面BFG,
∴AE⊥BF;
(2)证明:连A1B,则AB1⊥A1B,
又AB1⊥A1F,A1B∩A1F=A1
∴AB1⊥平面A1BF,
∴AB1⊥BF,
又AE∩AB1=A,AE⊥BF;
∴BF⊥平面AB1E,
∵BF?平面A1BF,
∴平面A1BF⊥平面AB1E;
(3)解:存在,取CC1中点P,即为所求,
连接EP、C1D
∵EP∥C1D,C1D∥AB1
∴EP∥AB1,∴AP?平面AB1E,
由(2)知BF⊥平面AB1E,
∴AP⊥BF.

点评 本题考查空间线面、线线垂直的判定及互相转化,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.直线x+y-2=0与直线x-y+3=0的位置关系是(  )
A.平行B.垂直C.相交但不垂直D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,左、右焦点分别为F1、F2
(1)若曲线C1:y2=2px(p>0)的焦点恰是双曲线的右焦点,且交点连线过点F2,则求双曲线离心率.
(2)过双曲线右焦点F2且倾斜角为60°的线段F2M与y轴交于M,与双曲线交于N,已知$\overrightarrow{M{F_2}}=4\overrightarrow{N{F_2}}$,则求该双曲线的离心率;
(3)若过右焦点F且倾斜角为30°的直线与双曲线的右支有两个交点,则求此双曲线离心率的取值范围;
(4)若离心率$e∈[\sqrt{2},2]$,令双曲线的两条渐近线构成的角中,以实轴为平分线的角为θ,则求θ的取值范围;
(5)若存在两条直线x=±m与双曲线相交于A,B,C,D,且四边形ABCD为正方形,则求双曲线离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列函数中,既是偶函数,又在(0,π)上递增的函数的个数是(  )
①y=tan|x|
②y=cos(-x)
③$y=sin({x-\frac{π}{2}})$
④$y=|{cot\frac{x}{2}}|$.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.$\underset{lim}{n→∞}$$\frac{1+2n+3{n}^{2}+…+2004{n}^{2003}}{{n}^{2003}+2{n}^{2002}+…+2003n+2004}$=2004.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某几何体的三视图如图所示,若此几何体的表面积为(4+2$\sqrt{2}$)π+8,则底面半圆的半径r等于(  )
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.己知向量$\overrightarrow{a}$=(2cosx,-1),$\overrightarrow{b}$=(2sin(x+$\frac{π}{6}$),1),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)求f(x)的解析表达式;
(2)求f(x)的最小正周期;
(3)求f(x)在区间[-$\frac{π}{6}$,$\frac{π}{4}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.四棱锥P-ABCD中,PA⊥平面ABCD,ABCD为正方形,AB=PA=2,M,N分别为PA,PB的中点,则MD与AN所成角的余弦值为$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.写出下面伪代码的运行结果.

查看答案和解析>>

同步练习册答案