精英家教网 > 高中数学 > 题目详情
(12分)如图,已知四棱柱的棱长都为,底面是菱形,且,侧棱为棱的中点,为线段的中点.

(Ⅰ)求证:平面
(Ⅱ)求三棱锥的体积.

(1)
、连接
(2)

∠BAD=
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知两个正方形ABCDDCEF不在同一平面内,MN分别为ABDF的中点。
(I)若CD=2,平面ABCD⊥平面DCEF,求直线MN的长;
(II)用反证法证明:直线MEBN是两条异面直线。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分,第(1)小题6分,第(2)小题8分)
 如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=,点E是线段SD上任意一点。  
(1)求证:AC⊥BE;
(2)若二面角C-AE-D的大小为,求线段长。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)如图,矩形BCC1B1所在平面垂直于三角形ABC所在平面,BB1=CC1=AC=2,,又E、F分别是C1A和C1B的中点。
  (1)求证:EF//平面ABC;
(2)求证:平面平面C1CBB1;
(3)求异面直线AB与EB1所成的角。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知平面和直线,给出条件:①;②;③;④;⑤.则当满足条件           时,有成立;(填所选条件的序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知SA⊥平面ABC,SA=AB,AB⊥BC,SB=BC,E是SC的中点,
DE⊥SC交AC于D.


 
求二面角E—BD—C的大小.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

四面体ABCD中,AB=BC==CD=DB,点A在面BCD上的射影恰是CD的中点,则对棱BC与AD所成的角等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线和平面.给定下列四个命题:
①若,那么
②若,且,则
③若,且,则
④若,且,则.
其中真命题的序号是(    )
A.①和②B.①C.①④D.③

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若两条直线和一个平面相交成等角,则这两条直线的位置关系是
A.平行B.异面C.相交D.平行、异面或相交

查看答案和解析>>

同步练习册答案