精英家教网 > 高中数学 > 题目详情
16.已知函数$f(x)=sin({\frac{3π}{4}-x})-\sqrt{3}cos({x+\frac{π}{4}}),x∈R$,则f(x)是(  )
A.周期为π,图象关于点$({\frac{π}{12},0})$对称的函数
B.最大值为2,图象关于点$({\frac{π}{12},0})$对称的函数
C.周期为2π,图象关于点$({-\frac{π}{12},0})$对称的函数
D.最大值为2,图象关于直线$x=\frac{5π}{12}$对称的函数

分析 利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性、最大值以及它的图象的对称性,逐一判断各个选项是否正确,从而得出结论.

解答 解:由于函数$f(x)=sin({\frac{3π}{4}-x})-\sqrt{3}cos({x+\frac{π}{4}}),x∈R$,
即f(x)=sin[π-($\frac{3π}{4}$-x)]-$\sqrt{3}$cos(x+$\frac{π}{4}$)=sin(x+$\frac{π}{4}$)-$\sqrt{3}$cos(x+$\frac{π}{4}$)=2sin(x+$\frac{π}{4}$-$\frac{π}{3}$)
=2sin(x-$\frac{π}{12}$),
故函数f(x)的周期为2π,最大值为2,当x=$\frac{π}{12}$时,f(x)=0,故B对且A不对;
根据当x=-$\frac{π}{12}$时,f(x)=-1,故函数的图象不关于点$({-\frac{π}{12},0})$对称,故C不对;
再根据当x=$\frac{5π}{12}$时,f(x)=$\sqrt{3}$,不是最值,故函数的图象不关于直线$x=\frac{5π}{12}$对称,故D不对,
故选:B.

点评 本题主要考查三角恒等变换,正弦函数的周期性、最大值以及它的图象的对称性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.把平面内两条直线的四种位置关系:①平行;②垂直;③相交;④斜交.分别填入图中的M,N,E,F中,顺序较为恰当的是(  )
A.①②③④B.①④②③C.①③②④D.②①④③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知公比不为1的等比数列{an}的前n项和为Sn,满足a1=1,且a2,a4,a3成等差数列,则$\frac{{S}_{6}}{{S}_{3}}$=(  )
A.$\frac{7}{8}$B.-$\frac{7}{8}$C.$\frac{9}{8}$D.-$\frac{9}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.五个不同的点最多可以连成线段的条数为10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.椭圆$\frac{{x}^{2}}{2}$+y2=1上一点P,M(1,0),则|PM|的最大值为1+$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.口袋中装有一些大小相同的红球和黑球,从中取出2个球.两个球都是红球的概率是$\frac{2}{5}$,都是黑球的概率是$\frac{1}{15}$,则取出的2个球中恰好一个红球一个黑球的概率是(  )
A.$\frac{7}{15}$B.$\frac{8}{15}$C.$\frac{3}{5}$D.$\frac{14}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,在梯形ABCD中,AB∥CD,AB=3,AD=2,CD=1,M为AD的中点,若$\overrightarrow{AB}$•$\overrightarrow{AD}$=4,则$\overrightarrow{AC}$•$\overrightarrow{BM}$=$-\frac{11}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和记为Tn,an+1=2Tn+1(n≥1),a1=1;等差数列{bn}中,且{bn}的前n项和为Sn,b1=3,a3+S3=27.
(1)求{an}与{bn}的通项公式;
(2)设数列{cn}满足cn=$\frac{3}{{b}_{n+1}lo{g}_{3}{a}_{n+1}}$,求{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的首项a1=2,an+1=2an-1(n∈N*)
(Ⅰ)写出数列{an}的前5项,并归纳猜想{an}的通项公式;
(Ⅱ)用数学归纳法证明(Ⅰ)中所猜想的通项公式.

查看答案和解析>>

同步练习册答案