精英家教网 > 高中数学 > 题目详情
1.口袋中装有一些大小相同的红球和黑球,从中取出2个球.两个球都是红球的概率是$\frac{2}{5}$,都是黑球的概率是$\frac{1}{15}$,则取出的2个球中恰好一个红球一个黑球的概率是(  )
A.$\frac{7}{15}$B.$\frac{8}{15}$C.$\frac{3}{5}$D.$\frac{14}{15}$

分析 设口袋中装有一些大小相同的红球和黑球的个数分别为a,b,由从中取出2个球.两个球都是红球的概率是$\frac{2}{5}$,都是黑球的概率是$\frac{1}{15}$,列出方程组,求出a,b,由此能求出取出的2个球中恰好一个红球一个黑球的概率.

解答 解:设口袋中装有一些大小相同的红球和黑球的个数分别为a,b,
∵从中取出2个球.两个球都是红球的概率是$\frac{2}{5}$,都是黑球的概率是$\frac{1}{15}$,
∴$\left\{\begin{array}{l}{\frac{{C}_{a}^{2}}{{C}_{a+b}^{2}}=\frac{2}{5}}\\{\frac{{C}_{b}^{2}}{{C}_{a+b}^{2}}=\frac{1}{15}}\end{array}\right.$,解得a=4,b=2,
∴取出的2个球中恰好一个红球一个黑球的概率:
p=$\frac{{C}_{4}^{1}{C}_{2}^{1}}{{C}_{6}^{2}}$=$\frac{8}{15}$.
故选:B.

点评 本题考查概率的求法,考查等可能事件概率计算公式、排列组合等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$(2,x),若$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$垂直,则实数x的值是(  )
A.-4B.-2C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如果函数f(x)=sin($ωx-\frac{π}{6}$)(ω>0)的最小正周期为$\frac{π}{2}$,则ω的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知抛物线y2=4px(p>0)上一点M到该抛物线焦点F的距离|MF|=3p,则直线MF的斜率为(  )
A.±2$\sqrt{2}$B.±1C.±$\sqrt{3}$D.±$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数$f(x)=sin({\frac{3π}{4}-x})-\sqrt{3}cos({x+\frac{π}{4}}),x∈R$,则f(x)是(  )
A.周期为π,图象关于点$({\frac{π}{12},0})$对称的函数
B.最大值为2,图象关于点$({\frac{π}{12},0})$对称的函数
C.周期为2π,图象关于点$({-\frac{π}{12},0})$对称的函数
D.最大值为2,图象关于直线$x=\frac{5π}{12}$对称的函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知tanα=2,则$\frac{sin(π+α)-cos(π-α)}{sin(\frac{π}{2}+α)-cos(\frac{3π}{2}-α)}$=$-\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知 {an}是等差数列,其公差为非零常数 d,前 n 项和为 Sn.设数列{$\frac{S_n}{n}$}的前 n 项和为 Tn,当且仅当 n=6 时,Tn有最大值,则$\frac{a_1}{d}$的取值范围是(  )
A.(-∞,-$\frac{5}{2}$)B.(-3,+∞)C.(-3,-$\frac{5}{2}$)D.(-3,+∞)∪(-$\frac{5}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.现有6个大小形状完全相同但颜色不同(包括红色和蓝色)的小球,将它们放入5个标号分别为1、2、3、4、5的盒子内,每个盒子不放空,则红球和篮球不放在标号为偶数的同一盒子内的放法数为1752(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.直线x=a(a>0)分别与直线y=3x+3,曲线y=2x+lnx交于A、B两点,则|AB|最小值为4.

查看答案和解析>>

同步练习册答案