精英家教网 > 高中数学 > 题目详情

【题目】已知 的夹角为120°,且| |=4,| |=2.求:
(1)( ﹣2 )( + );
(2)|3 ﹣4 |.

【答案】
(1)解: 的夹角为120°,且| |=4,| |=2,

=| || |cos120°=4×2×(﹣ )=﹣4,

﹣2 )( + )=| |2﹣2 + ﹣2| |2=16+4﹣2×4=12;


(2)解:|3 ﹣4 |2=9| |2﹣24 +16| |2=9×42﹣24×(﹣4)+16×22=16×19,

∴|3 ﹣4 |=4


【解析】先根据向量的数量积公式求出 =﹣4,再分别根据向量的数量积的运算和模计算即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式(a2﹣4)x2+(a+2)x﹣1≥0的解集是空集,求实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆x2+y2=8内有一点P0(﹣1,2),AB为过点P0且倾斜角为α的弦;
(1)当 时,求AB的长;
(2)当弦AB被点P0平分时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆C: + =1(a>b>0)过点(2,0),离心率为
(1)求C的方程;
(2)过点(1,0)且斜率为1的直线l与椭圆C相交于A,B两点,求AB的中点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=﹣x与直线y=k(x+1)相交于A(x1 , y1),B(x2 , y2)两点,O为坐标原点.
(1)求y1y2的值;
(2)求证:OA⊥OB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的不等式ax2+bx+c<0的解集为({﹣∞,﹣1})∪( ,+∞),则不等式cx2﹣bx+a<0的解集为(
A.(﹣1,2)
B.(﹣∞,﹣1)∪(2,+∞)
C.(﹣2,1)
D.(﹣∞,﹣2)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,已知CA=1,CB=2,∠ACB=60°.
(1)求| |;
(2)已知点D是AB上一点,满足 ,点E是边CB上一点,满足 . ①当λ= 时,求
②是否存在非零实数λ,使得 ?若存在,求出的λ值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是各项均为正数的等比数列a1+a2=2( ),a3+a4+a5=64 + +
(1)求{an}的通项公式;
(2)设bn=(an+ 2 , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)= 恰有2个零点,则实数a的取值范围是

查看答案和解析>>

同步练习册答案