精英家教网 > 高中数学 > 题目详情
证明:
2(cosα-sinα)
1+sinα+cosα
=
cosα
1+sinα
-
sinα
1+cosα
分析:证明此恒等式可采取常用方法,也可以运用分析法,即要证
A
B
=
C
D
,只要证A•D=B•C,从而将分式化为整式.
解答:解:证法一:右边=
cosα+cos2α-sinα-sin2α
(1+sinα)(1+cosα)

=
(cosα-sinα)(1+cosα+sinα)
1+sinα•cosα+sinα+cosα

=
2(cosα-sinα)(1+cosα+sinα)
2(1+sinα+cosα+sinαcosα)

=
2(cosα-sinα)(1+cosα+sinα)
1+sin2α+cos2α+2sinα+2cosα+2sinαcosα

=
2(cosα-sinα)
(1+sinα+cosα)
=左边

证法二:要证等式,即为
2(cosα-sinα)
1+sinα+cosα
=
(cosα-sinα)(1+sinα+cosα)
(1+sinα)(1+cosα)

只要证2(1+sinα)(1+cosα)=(1+sinα+cosα)2
即证:2+2sinα+2cosα+2sinαcosα=1+sin2α+cos2α+2sinα+2cosα+2sinαcosα,
即1=sin2α+cos2α,显然成立,
故原式得证.
点评:在进行三角函数的化简和三角恒等式的证明时,需要仔细观察题目的特征,灵活、恰当地选择公式,利用倒数关系比常规的“化切为弦”要简洁得多.同角三角函数的基本关系式有三种,即平方关系、商的关系、倒数关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网A.(不等式选讲选做题)若不等式|x+1|+|x-2|<a无实数解,则a的取值范围是
 

B.(几何证明选做题)如图,⊙O的直径AB=6cm,P是AB延长线上的一点,过P点作⊙O的切线,切点为C,连接AC,若∠CPA=30°,PC=
 

C.(极坐标参数方程选做题)曲线
x=cosα
y=1+sinα
(a为参数)与曲线ρ2-2ρcosθ=0的交点个数为
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知b、c是实数,函数f(x)=x2+bx+c对任意α、β∈R有f(sinα)≥0且f(2+cosβ)≤0.
(1)求f(1)的值;
(2)证明:c≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)(1)用坐标法证明公式:cos(α-β)=cosαcosβ+sinαsinβ;
(2)证明:cos(α+β)cos(α-β)=cos2α-sin2β.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列命题:
(1)θ是第二象限角;
(2)sin
θ
2
+cos
θ
2
=-
7
5

(3)tan
θ
2
=
4
3

(4)tan
θ
2
=
3
4

(5)sin
θ
2
-cos
θ
2
=-
1
5

试以其中若干(一个或多个)命题为条件,然后以剩余命题中的若干命题为结论,组成新命题,并证明之.

查看答案和解析>>

同步练习册答案