【题目】如图,在三棱柱
中,
是边长为2的菱形,且
,
是矩形,
,且平面
平面
,
点在线段
上移动(
不与
重合),
是
的中点.
![]()
(1)当四面体
的外接球的表面积为
时,证明:
.平面![]()
(2)当四面体
的体积最大时,求平面
与平面
所成锐二面角的余弦值.
【答案】(1)证明见解析(2)![]()
【解析】
(1)由题意,先求得
为
的中点,再证明平面
平面
,进而可得结论;
(2)由题意,当点
位于点
时,四面体
的体积最大,再建立空间直角坐标系,利用空间向量运算即可.
(1)证明:当四面体
的外接球的表面积为
时.
则其外接球的半径为
.
因为
时边长为2的菱形,
是矩形.
,且平面
平面
.
则
,
.
则
为四面体
外接球的直径.
所以
,即
.
由题意,
,
,所以
.
因为
,所以
为
的中点.
记
的中点为
,连接
,
.
![]()
则
,
,
,所以平面
平面
.
因为
平面
,所以
平面
.
(2)由题意,
平面
,则三棱锥
的高不变.
当四面体
的体积最大时,
的面积最大.
所以当点
位于点
时,四面体
的体积最大.
以点
为坐标原点,建立如图所示的空间直角坐标系
.
![]()
则
,
,
,
,
.
所以
,
,
,
.
设平面
的法向量为
.
则![]()
令
,得
.
设平面
的一个法向量为
.
则![]()
令
,得
.
设平面
与平面
所成锐二面角是
,则
.
所以当四面体
的体积最大时,平面
与平面
所成锐二面角的余弦值为
.
科目:高中数学 来源: 题型:
【题目】“伟大的变革—庆祝改革开放40周年大型展览”于2019年3月20日在中国国家博物馆闭幕,本次特展紧扣“改革开放40年光辉历程”的主线,多角度、全景式描绘了我国改革开放40年波澜壮阔的历史画卷.据统计,展览全程呈现出持续火爆的状态,现场观众累计达423万人次,参展人数屡次创造国家博物馆参观纪录,网上展馆点击浏览总量达4.03亿次.
下表是2019年2月参观人数(单位:万人)统计表
日期 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
人数 | 3.0 | 3.1 | 2.5 | 2.3 | 5.4 | 6.8 | 6.2 | 6.7 | 5.5 | 4.9 | 3.2 | 3.0 | 2.7 | 2.5 |
日期 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |
人数 | 2.4 | 2.9 | 3.2 | 2.8 | 2.9 | 2.3 | 3.0 | 2.9 | 3.1 | 3.0 | 3.1 | 3.1 | 3.1 | 3.0 |
![]()
根据表中数据回答下列问题:
(1)请将2019年2月前半月(1~14日)和后半月(15~28日)参观人数统计对比茎叶图填补完整,并通过茎叶图比较两组数据方差的大小(不要求计算出具体值,得出结论即可);
(2)将2019年2月参观人数数据用该天的对应日期作为样本编号,现从中抽样7天的样本数据.若抽取的样本编号是以4为公差的等差数列,且数列的第4项为15,求抽出的这7个样本数据的平均值;
(3)根据国博以往展览数据及调查统计信息可知,单日入馆参观人数为0~3(含3,单位:万人)时,参观者的体验满意度最佳,在从(2)中抽出的样本数据中随机抽取两天的数据,求这两天参观者的体验满意度均为最住的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
的最大值为
.
(Ⅰ)求实数
的值;
(Ⅱ)当
时,讨论函数
的单调性;
(Ⅲ)当
时,令
,是否存在区间
.使得函数
在区间
上的值域为
若存在,求实数
的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知曲线
的参数方程为
(
,
为参数).以坐标原点
为极点,
轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线
的极坐标方程为
.
(1)当
时,求曲线
上的点到直线
的距离的最大值;
(2)若曲线
上的所有点都在直线
的下方,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,已知四边形
是边长为
的正方形,点
是
的中点,点
在底面
上的射影为点
,点
在棱
上,且四棱锥
的体积为
.
![]()
(1)若点
是
的中点,求证:平面
平面
;
(2)若二面角
的余弦值为
,求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在矩形
中,已知
,
,点
,
分别在边
,
上,且
,将梯形
沿
折起,使
在平面
上的射影
恰好落在线段
靠近
的三等分点处,得到图2中的立体图形.
(1)
(2) ![]()
(1)在图2中,求证:
平面
;
(2)求二面角
的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国家每年都会对中小学生进行体质健康监测,一分钟跳绳是监测的项目之一.今年某小学对本校六年级300名学生的一分钟跳绳情况做了统计,发现一分钟跳绳个数最低为10,最高为189.现将跳绳个数分成
,
,
,
,
,
6组,并绘制出如下的频率分布直方图.
![]()
(1)若一分钟跳绳个数达到160为优秀,求该校六年级学生一分钟跳绳为优秀的人数;
(2)上级部门要对该校体质监测情况进行复查,发现每组男、女学生人数比例有很大差别,
组男、女人数之比为
,
组男、女人数之比为
,
组男、女人数之比为
,
组男、女人数之比为
,
组男、女人数之比为
,
组男、女人数之比为
.试估计此校六年级男生一分钟跳绳个数的平均数(同一组中的数据用该组区间的中点值作代表,结果保留整数).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于函数
,下列说法正确的是( )
(1)
是
的极小值点;
(2)函数
有且只有1个零点;
(3)
恒成立;
(4)设函数
,若存在区间
,使
在
上的值域是
,则
.
A.(1) (2)B.(2)(4)C.(1) (2) (4)D.(1)(2)(3)(4)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com