精英家教网 > 高中数学 > 题目详情
7.已知正四棱锥S-ABCD的侧棱长与底面边长都等于2,点E是棱SB的中点,则直线AE与直线SD所成的角的余弦值为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{3}$

分析 由题意画出图形,连接AC,BD,交于O,连接EO,可得EO∥SD,则∠AEO为直线AE与直线SD所成的角,求解直角三角形得答案.

解答 解:如图,
连接AC,BD,交于O,连接EO,
∴EO∥SD,则直线AE与直线SD所成的角为∠AEO.
∵正四棱锥S-ABCD的侧棱长与底面边长都等于2,
∴AO=$\sqrt{2}$,AE=$\sqrt{3}$,
在Rt△AOE中,$EO=\sqrt{A{E}^{2}-A{O}^{2}}=\sqrt{(\sqrt{3})^{2}-(\sqrt{2})^{2}}=1$.
∴cos∠AEO=$\frac{EO}{AE}$=$\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$.
故选:D.

点评 本题考查异面直线所成的角,关键是由异面直线所成角的定义找出角,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.在5个球中有3个红球,2个白球(各不相同),不放回的依次摸出2个球,则在第一次摸出红球的条件下,第2次也摸出红球的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=sin(x+$\frac{π}{6}$),其中x∈[-$\frac{π}{3}$,a],若f(x)的值域是[-$\frac{1}{2}$,1],则cosα的取值范围是(  )
A.$[\frac{1}{2},1)$B.$[{-1,\frac{1}{2}}]$C.$[{0,\frac{1}{2}}]$D.$[{-\frac{1}{2},0}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.f(x)=$\left\{\begin{array}{l}{{x}^{2}+1(x≤0)}\\{-2x(x>0)}\end{array}\right.$,若f(x)=10,则x=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.正三角形ABC中,D为线段BC上的点,且AB=6,BD=2,则$\overrightarrow{AB}$•$\overrightarrow{AD}$=30.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知奇函数f(x)在(0,+∞)上单调递增,且f(2)=0,则不等式$\frac{f(-x)-f(x)}{2x}$≥0的解集为(  )
A.[-2,0)∪(0,2]B.[-2,0)∪[2,+∞)C.(-∞,2]∪(0,2]D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.方程ax2+ay2-4(a-1)x+4y=0表示圆,则实数a的取值范围(  )
A.RB.(-∞,0)∪(0,+∞)C.(0,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=2cos(x-$\frac{π}{3}$)($\frac{π}{6}$≤x≤$\frac{2}{3}$π)的最小值是(  )
A.1B.-$\sqrt{3}$C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.全集U=R,若集合A={x|3≤x<10},B={x|1<x-1≤6},则
(1)求A∩B,A∪B;
(2)若集合C={x|x>a},满足C∪A=C时,求a的取值范围.(结果用区间或集合表示)

查看答案和解析>>

同步练习册答案