精英家教网 > 高中数学 > 题目详情

【题目】已知函数)在其定义域内有两个不同的极值点.

(Ⅰ)求实数的取值范围;

(Ⅱ)记两个极值点分别为 ),求证: .

【答案】见解析

【解析】试题分析:(Ⅰ求导,将函数由两个不等极值转化为导函数有两个不等零点,再进一步转化为两函数图象的交点问题;(合理构造函数,将证明不等式转化为求函数的最值问题,再利用导数进行求解.

试题解析:(Ⅰ)依题,函数的定义域为,所以方程有两个不同根,即方程有两个不同根.即函数与函数的图象在上有两个不同交点,可见,若令过原点且切于函数图象的直线斜率为,只须.令切点,所以,又,所以

解得, ,于是,所以.

(Ⅱ)由(Ⅰ)可知 分别是方程的两个根,即.

作差得, ,即.

所以不等式,等价于

下面先证,即证

,即证),

),则

上单调递增,∴

得证,从而得证;

再证,即证,即证),

),则

上单调递减,∴

得证,从而得证,

综上所述, 成立,即.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)= x3﹣ax2﹣4在(3,+∞)上是增函数,则实数a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使CD=AC,连接AD交⊙O于点E,连接BE与AC交于点F.

(1)判断BE是否平分∠ABC,并说明理由;
(2)若AE=6,BE=8,求EF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,记不等式f(x)4的解集为M,记函数的定义域为集合N.

(Ⅰ)求集合M和N;

(Ⅱ)求MN和M(RN).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知方程x2y2-2(t+3)x+2(1-4t2)y+16t4+9=0(t∈R)的图形是圆.

(1)求t的取值范围;

(2)求圆的面积取最大值时t的值;

(3)若点P(3,4t2)恒在所给圆内,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)为一次函数,g(x)为二次函数,且f[g(x)]=g[f(x)].

(1)求f(x)的解析式;

(2)若y=g(x)与x轴及y=f(x)都相切,且g(0)= ,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处取得极值.

(1)求f(x)的表达式和极值.

(2)若f(x)在区间[m,m+4]上是单调函数,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将边长为2的正沿着高折起,使,若折起后四点都在球的表面上,则球的表面积为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式|x﹣3|+|x﹣m|≥2m的解集为R. (Ⅰ)求m的最大值;
(Ⅱ)已知a>0,b>0,c>0,且a+b+c=m,求4a2+9b2+c2的最小值及此时a,b,c的值.

查看答案和解析>>

同步练习册答案