精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)满足其导函数f′(x)=1-πsinπx,且f(1)=-2,则f($\frac{1}{2016}$)十f($\frac{2}{2016}$)+f($\frac{3}{2016}$)+…+f($\frac{2014}{2016}$)+f($\frac{2015}{2016}$),的值为(  )
A.1B.0C.$\frac{6045}{2}$D.-$\frac{6045}{2}$

分析 根据条件可得f(x)=x+cosπx-2,该函数满足f(x)+f(1-x)=[x+cosπx-2]+[1-x+cos(π-πx)-2]=-3,再用倒序相加法求和.

解答 解:∵f'(x)=1-πsinπx,
∴可设f(x)=x+cosπx+C,其中C为常数,
由于f(1)=-2,所以C=-2,
即f(x)=x+cosπx-2,
又f(x)+f(1-x)=[x+cosπx-2]+[1-x+cos(π-πx)-2]=-3,
记A=f($\frac{1}{2016}$)十f($\frac{2}{2016}$)+f($\frac{3}{2016}$)+…+f($\frac{2014}{2016}$)+f($\frac{2015}{2016}$),
则A=f($\frac{2015}{2016}$)十f($\frac{2014}{2016}$)+f($\frac{2013}{2016}$)+…+f($\frac{2}{2016}$)+f($\frac{1}{2016}$),
两式相加(倒序相加)得,2A=2015×(-3),
所以,A=-$\frac{6045}{2}$,
故选:D.

点评 本题主要考查了导数的运算,三角函数的恒等变换,以及运用倒序相加法求和,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知点M($\frac{3\sqrt{5}}{5}$,$\frac{4\sqrt{5}}{5}$),F($\sqrt{5}$,0).且P为$\frac{{x}^{2}}{4}$-y2=1上动点.当||MP|-|FP||取最大值时P的坐标为($\frac{6\sqrt{5}}{5}$,-$\frac{2\sqrt{5}}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=(1+$\frac{1}{tanx}$)sin2x-2sin(x+$\frac{π}{4}$)•sin(x-$\frac{π}{4}$).
(1)若tanα=2,求f(α)的值;
(2)若x∈[$\frac{π}{12}$,$\frac{π}{2}$],求f(x)的取值范围;
(3)画出函数在一个周期内[0,π]的图象(注意定义域);
(4)说出函数在[0,π]内的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知tanα+$\frac{1}{tanα}$=2,则log2[(sinx+cosα)2-1]的值为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.-$\frac{1}{4}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求函数f(x)=$\frac{sin\frac{5}{2}x}{2sin\frac{x}{2}}$-$\frac{1}{2}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知a∈R,函数f(x)=$\frac{a•{2}^{x}-{a}^{-2}}{{2}^{x}+1}$为奇函数.
(1)实数a的值;
(2)判断并证明函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.经过双曲线x2-$\frac{{y}^{2}}{3}$=1的右焦点F2作的直线.与双曲线交于A、B两点.|AB|=3.求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)为对数函数,且点P($\frac{1}{4}$,2)在它的图象上
(1)求f(x)的解析式;
(2)若二次函数g(x)为偶函数,最小值为0,它的图象与对数函数f(x)图象有公共点P,求函数g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=log2(-x2+x+2)的定义域是(-1,2),值域是(-∞,2log23-2].

查看答案和解析>>

同步练习册答案