精英家教网 > 高中数学 > 题目详情
5.已知a∈R,函数f(x)=$\frac{a•{2}^{x}-{a}^{-2}}{{2}^{x}+1}$为奇函数.
(1)实数a的值;
(2)判断并证明函数的单调性.

分析 (1)由f(x)为奇函数,知f(0)=0,解得a=1,再验证即可;
(2)直接用单调性的定义作差证明,f(x1)-f(x2)=$\frac{2({2}^{{x}_{1}}-{2}^{{x}_{2}})}{({2}^{{x}_{1}}+1)({2}^{{x}_{2}}+1)}$.

解答 解:(1)∵f(x)为奇函数,∴f(0)=0,
即$\frac{a•2^0-{a}^{-2}}{2^0+1}$=0,解得a=1,
所以,f(x)=$\frac{2^x-1}{2^x+1}$,对f(x)的奇偶性验证如下:
f(x)+f(-x)=$\frac{2^x-1}{2^x+1}$+$\frac{{2}^{-x}-1}{{2}^{-x}+1}$=$\frac{2^x-1}{2^x+1}$+$\frac{1-2^x}{1+2^x}$=0,
即a=1时,f(x)为奇函数,符合题意;
(2)f(x)=$\frac{2^x-1}{2^x+1}$=1-$\frac{2}{2^x+1}$为(-∞,+∞)上的增函数,证明过程如下:
任取x1,x2∈(-∞,+∞),且x1<x2
则f(x1)-f(x2)=(1-$\frac{2}{{2}^{{x}_{1}}+1}$)-(1-$\frac{2}{{2}^{{x}_{2}}+1}$)
=$\frac{2}{{2}^{{x}_{2}}+1}$-$\frac{2}{{2}^{{x}_{1}}+1}$=$\frac{2({2}^{{x}_{1}}-{2}^{{x}_{2}})}{({2}^{{x}_{1}}+1)({2}^{{x}_{2}}+1)}$,
因为,x1<x2,所以,${2}^{{x}_{1}}$<${2}^{{x}_{2}}$,
所以,f(x1)-f(x2)<0,即f(x1)<f(x2),
故f(x)在(-∞,+∞)上单调递增.

点评 本题主要考查了函数奇偶性的性质,函数单调性的判断和证明,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设函数f(x)=${∫}_{0}^{{x}^{2}}$sintdt,则当x→0时,f(x)是x的(  )阶无穷小.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知一个圆锥的底面半径为R,高为H.一个圆柱的下底面在圆锥的底面上,且圆柱的上底面为圆锥的截面,设圆柱的高为x.求:
(1)试用x表示圆柱的侧面积;
(2)x为何值时,圆柱的侧面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.sin($\frac{π}{4}$+α)sin($\frac{π}{4}$-α)的化简结果为(  )
A.cos2αB.$\frac{1}{2}$cos2αC.sin2αD.$\frac{1}{2}$sin2α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)满足其导函数f′(x)=1-πsinπx,且f(1)=-2,则f($\frac{1}{2016}$)十f($\frac{2}{2016}$)+f($\frac{3}{2016}$)+…+f($\frac{2014}{2016}$)+f($\frac{2015}{2016}$),的值为(  )
A.1B.0C.$\frac{6045}{2}$D.-$\frac{6045}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2sinωx(0<ω<1)在[0,$\frac{π}{2}$]上的最大值为$\sqrt{2}$,当把f(x)的图象上的所有点向右平移φ(0<φ<$\frac{π}{2}$)个单位后,得到图象对应的函数g(x)的图象关于直线x=$\frac{7π}{6}$对称.
(1)求函数g(x)的解析式:
(2)在△ABC中.一个内角A,B,C所对的边分别是a,b,c.已知g(x)在y轴右侧的第一个零点为C,若c=4,求△ABC的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.平面上到定点A(1.1)和到定直线l:x+2y=3的距离相等的点的轨迹为(  )
A.直线B.抛物线C.双曲线D.椭圆

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若不同两点P,Q的坐标分别为(a,b),(3-b,3-a),则线段PQ的垂直平分线的方程为x+y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设集合P={1,2,3,4,5},对任意k∈P和正整数m,记f(m,k)=$\sum_{i=1}^5{[m\sqrt{\frac{k+1}{i+1}}]}$,其中,[a]表示不大于a的最大整数,求证:对任意正整数n,存在k∈P和正整数m,使得f(m,k)=n.

查看答案和解析>>

同步练习册答案