精英家教网 > 高中数学 > 题目详情
10.已知直线y=x+m被椭圆2x2+y2=2截得线段的中点的横坐标为$\frac{1}{6}$.则中点的纵坐标为-$\frac{1}{3}$.

分析 通过联立直线与椭圆方程,利用韦达定理可知x1+x2=-$\frac{2m}{3}$,通过截得线段的中点的横坐标为$\frac{1}{6}$可知m=-$\frac{1}{2}$、x1+x2=$\frac{1}{3}$,代入直线方程计算即得结论.

解答 解:联立直线与椭圆方程,消去y整理得:
3x2+2mx+m2-2=0,
则:x1+x2=-$\frac{2m}{3}$,
又∵截得线段的中点的横坐标为$\frac{1}{6}$,
∴$\frac{{x}_{1}+{x}_{2}}{2}$=$\frac{1}{6}$,即-$\frac{m}{3}$=$\frac{1}{6}$,
∴m=-$\frac{1}{2}$,x1+x2=$\frac{1}{3}$,
∴中点的纵坐标为$\frac{({x}_{1}+m)+({x}_{2}+m)}{2}$=$\frac{{x}_{1}+{x}_{2}}{2}$+m=$\frac{1}{6}$-$\frac{1}{2}$=-$\frac{1}{3}$,
故答案为:-$\frac{1}{3}$.

点评 本题考查直线与圆锥曲线的关系,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.有一圆柱形的无盖杯子,它的内表面积是400(cm2),则杯子的容积V(cm3)表示成杯子底面内半径r(cm)的函数解析式为$V=\frac{{400r-π{r^3}}}{2},r∈(0,\frac{{20\sqrt{π}}}{π})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列{an}中,a1=2,且(n+1)an-(n-1)an-1=0(n≥2),则an=$\frac{4}{n(n+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若α∈(0,π),且$\sqrt{2}$cos2α=sin($\frac{9π}{4}$-α),则sin2α的值为(  )
A.$\frac{3}{4}$B.-$\frac{3}{4}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=a•2x+b的图象过点A(1,$\frac{3}{2}$),B(2,$\frac{5}{2}$).
(1)求函数y=f(x)的反函数y=f-1(x)的解析式;
(2)若F(x)=f-1(2x-1)-log${\;}_{\frac{1}{2}}$f(x),求使得F(x)≤0的x取值范围;
(3)记an=2${\;}^{{f}^{-1}(n)}$(n∈N*),是否存在正数k,使得(1+$\frac{1}{{a}_{1}}$)(1+$\frac{1}{{a}_{2}}$)…(1+$\frac{1}{{a}_{n}}$)≥k$\sqrt{2n+1}$对n∈N*均成立?若存在,求出k的最大值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)=m•2x+2-4x.若存在实数x0∈[-1,1],使得f(-x0)+f(x0)=1成立,则实数m的取值范围是(  )
A.[$\frac{3}{16},\frac{21}{80}$]B.[$\frac{3}{8},\frac{21}{40}$]C.[$\frac{3}{4},\frac{21}{20}$]D.[$\frac{3}{2},\frac{21}{10}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.$\frac{134}{3}$π所在的象限为(  )
A.第Ⅰ象限B.第Ⅱ象限C.第Ⅲ象限D.第Ⅳ象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.解方程:(3x-1)($\sqrt{9{x}^{2}-6x+5}$+1)+(2x-3)($\sqrt{4{x}^{2}-12x+13}$+1)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.实数x,y满足关系$\left\{\begin{array}{l}{x+y≤2}\\{x-y≥-2}\\{y≥0}\end{array}\right.$,则x2+y2的最大值是4.

查看答案和解析>>

同步练习册答案