精英家教网 > 高中数学 > 题目详情
2.在平面直角坐标系xOy中,设椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距为2$\sqrt{6}$,且过点($\sqrt{2}$,$\sqrt{5}$).
(1)求椭圆C的方程;
(2)设点P是椭圆C上横坐标大于2的一点,过点P作圆(x-1)2+y2=1的两条切线分别与y轴交于点A,B,试确定点P的坐标,使得△PAB的面积最大.

分析 (1)由题意可得2c=2$\sqrt{6}$,点($\sqrt{2}$,$\sqrt{5}$)代入椭圆方程,以及a,b,c的关系,解得a,b,进而得到椭圆方程;
(2)设点P(x0,y0),其中${x_0}∈({2,2\sqrt{3}}]$,又设A(0,m),B(0,n),不妨m>n,求得直线PA,PB的方程,运用直线和圆相切的条件:d=r,化简整理,构造二次方程运用韦达定理,由三角形的面积公式,化简构造函数,运用导数判断单调性,即可得到所求最大值时P的坐标.

解答 解:(1)由题意得,$2c=2\sqrt{6}$,
代入点($\sqrt{2}$,$\sqrt{5}$),可得$\frac{2}{a^2}+\frac{5}{b^2}=1$,
又c2=a2-b2
解得a2=12,b2=6,
所以椭圆C的方程为$\frac{x^2}{12}+\frac{y^2}{6}=1$;
(2)设点P(x0,y0),其中${x_0}∈({2,2\sqrt{3}}]$,且$\frac{{{x_0}^2}}{12}+\frac{{{y_0}^2}}{6}=1$,
又设A(0,m),B(0,n),不妨m>n,
则直线PA的方程为:(y0-m)x-x0y+x0m=0,
则圆心(1,0)到直线PA的距离为$\frac{{|{{y_0}-m+{x_0}m}|}}{{\sqrt{{{({y_0}-m)}^2}+{x_0}^2}}}=1$,
化简得$({x_0}-2){m^2}+2{y_0}m-{x_0}=0$,
同理可得,$({x_0}-2){n^2}+2{y_0}n-{x_0}=0$,
所以m,n为方程$({x_0}-2){x^2}+2{y_0}y-{x_0}=0$的两根,
则${({m-n})^2}=\frac{{{{({2{y_0}})}^2}+4{x_0}({x_0}-2)}}{{{{({x_0}-2)}^2}}}$,
又△PAB的面积为S=$\frac{1}{2}(m-n){x_0}$,
所以${S^2}=\frac{{{y_0}^2+{x_0}({x_0}-2)}}{{{{({x_0}-2)}^2}}}{x_0}^2$=$\frac{{{{({x_0}-2)}^2}+8}}{{2{{({x_0}-2)}^2}}}{x_0}^2$,
令$t={x_0}-2∈({0,2\sqrt{3}-2}]$,记$f(t)=\frac{{({t^2}+8){{(t+2)}^2}}}{{2{t^2}}}$,
则$f'(t)=\frac{{t(t+2){{({t^3}-16)}^2}}}{t^4}>0$在$({0,2\sqrt{3}-2}]$恒成立,
所以f(t)在$({0,2\sqrt{3}-2}]$上单调递增,
故$t=2\sqrt{3}-2$,即${x_0}=2\sqrt{3}$时,此时P的坐标为(2$\sqrt{3}$,0),f(t)最大,
此时△PAB的面积最大.

点评 本题考查椭圆的方程的求法,注意椭圆的焦距和点满足椭圆方程,考查三角形的面积的最值的求法,注意运用直线和圆相切的条件:d=r,考查构造函数法,运用导数判断单调性,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.把函数y=sin($\frac{π}{4}$-2x)向右平移$\frac{π}{8}$个单位,然后把横坐标变为原来的2倍,则所得到的函数的解析式为y=cosx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,抛物线x2=4$\sqrt{6}$y的焦点B是双曲线虚轴上的一个顶点,线段BF与双曲线C的右支交于点A,若$\overrightarrow{BA}$=2$\overrightarrow{AF}$,则双曲线C的方程为(  )
A.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{6}$=1B.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{6}$=1C.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{6}$=1D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{6}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在直角梯形AA1B1B中,∠A1AB=90°,A1B1∥AB,AB=AA1=2A1B1=2.直角梯形AA1C1C通过直角梯形AA1B1B以直线AA1为轴旋转得到,且使得平面AA1C1C⊥平面AA1B1B.M为线段BC的中点,P为线段BB1上的动点.
(Ⅰ)求证:A1C1⊥AP;
(Ⅱ)当点P是线段BB1中点时,求二面角P-AM-B的余弦值;
(Ⅲ)是否存在点P,使得直线A1C∥平面AMP?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设F1,F2分别是椭圆$\frac{{x}^{2}}{4}+{y}^{2}=1$的左、右焦点,点P是该椭圆上一个动点,则$\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}$的取值范围是(  )
A.[-2,1)B.(-2,1)C.(-2,1]D.[-2,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设椭圆C1:$\frac{{x}^{2}}{2}$+y2=1的右焦点为F,动圆过点F且与直线x+1=0相切,M(3,0),设动圆圆心的轨迹为C2
(1)求C2的方程;
(2)过F任作一条斜率为k1的直线l,l与C2交于A,B两点,直线MA交C2于另一点C,直线MB交C2于另一点D,若直线CD的斜率为k2,问,$\frac{{k}_{1}}{{k}_{2}}$是否为定值?若是,求出这个定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知命题p:?α∈R,sin(π-α)≠-sinα,命题q:?x∈[0,+∞),sinx>x,则下面结论正确的是(  )
A.¬p∨q是真命题B.p∨q是真命题C.¬p∧q是真命题D.q是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在等腰梯形ABCD中,$\overrightarrow{AB}$=2$\overrightarrow{DC}$,|$\overrightarrow{DC}$|=1,点M是线段DC上的动点,则$\overrightarrow{AB}$•$\overrightarrow{AM}$的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,a,b,c分别是角A,B,C的对边,且满足$\frac{2a-b}{c}$=$\frac{cosB}{cosC}$,
(1)求角C的大小;
(2)设函数f(x)=2sinxcosxcosC+2sin2xsinC-$\frac{\sqrt{3}}{2}$,求函数f(x)在区间[0,$\frac{π}{2}$]上的值域.

查看答案和解析>>

同步练习册答案