精英家教网 > 高中数学 > 题目详情

 如图,四棱锥F-ABCD的底面ABCD是菱形,其对角线AC=2,BD=,AE、CF都与平面ABCD垂直,AE=1,CF=2.

(I)求二面角B-AF-D的大小;

(II)求四棱锥E-ABCD与四棱锥F-ABCD公共部分的体积.

 

【答案】

(1)

(2)

【解析】

试题分析:解:(I)(综合法)连接AC、BD交于菱形的中心O,过O作OGAF,

G为垂足。连接BG、DG。由BDAC,BDCF得BD平面ACF,故BDAF。

于是AF平面BGD,所以BGAF,DGAF,BGD为二面角B-AF-D 的平面角。

,得

,得

(向量法)以A为坐标原点,方向分别为x轴、y轴、z轴的正方向建立空间直角坐标系(如图)

设平面ABF的法向量,则由

,得

同理,可求得平面ADF的法向量

知,平面ABF与平面ADF垂直,

二面角B-AF-D的大小等于

(II)连EB、EC、ED,设直线AF与直线CE相交于点H,则四棱锥E-ABCD与四棱锥F-ABCD的公共部分为四棱锥H-ABCD。

过H作HP⊥平面ABCD,P为垂足。

因为EA⊥平面ABCD,FC⊥平面ABCD,,所以平面ACFE⊥平面ABCD,从而

又因为

故四棱锥H-ABCD的体积

考点:二面角以及体积

点评:主要是考查了二面角的平面角以及体积的计算。属于基础题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD是矩形,E,F分别是AB,PD的中点.若PA=AD=3,CD=
6

(1)求证:AF∥平面PCE;
(2)求直线FC平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,PA=1,PA⊥平面ABCD,E是PC的中点,F是AB的中点.
(1)求证:BE∥平面PDF;
(2)求证:平面PDF⊥平面PAB;
(3)求二面角P-BC-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥A-BCDE的底面BCDE是直角梯形,CE∥BD,∠ECB=90°,AC⊥平面BCDE,CE=CB=CA=2,BD=1.
(Ⅰ)求直线CA与平面ADE所成角的正弦值;
(Ⅱ)在线段ED上是否存在一点F,使得异面直线CF与AB所成角余弦值等
26
13
?若存在,试确定点F的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•山东)如图,四棱锥P-ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB、AB、BC、PD、PC的中点.
(Ⅰ)求证:CE∥平面PAD
(Ⅱ)求证:平面EFG⊥平面EMN.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四棱锥P-ABCD的底面是直角梯形,其中AB=
2
2
,DC=
2
,AD=1
,AD⊥AB,顶点P在底面ABCD的射影落在线段AC上,F是PC的中点.
(Ⅰ)求证:BF∥平面PAD;
(Ⅱ)求证:平面PAC⊥平面PDB;
(Ⅲ)若PA=PC=1,求三棱锥P-DBF的体积.

查看答案和解析>>

同步练习册答案