| A. | $({0,\sqrt{2}})$ | B. | $({0,\sqrt{3}})$ | C. | $({\sqrt{2},\sqrt{3}})$ | D. | $({\sqrt{3},2})$ |
分析 根据正弦定理和B=2A及二倍角的正弦公式化简得到AC=2cosA,要求AC的范围,只需找出2cosA的范围即可,根据锐角△ABC和B=2A求出A的范围,然后根据余弦函数的增减性得到cosA的范围即可.
解答 解:∵△ABC是锐角三角形,C为锐角,
∴A+B≥$\frac{π}{2}$,由B=2A得到A+2A>$\frac{π}{2}$,且2A=B<$\frac{π}{2}$,
解得:$\frac{π}{6}$<A<$\frac{π}{4}$,
∴$\sqrt{2}$<2cosA<$\sqrt{3}$,
根据正弦定理$\frac{AC}{sinB}=\frac{BC}{sinA}$,B=2A,
得到$\frac{AC}{2sinAcosA}=\frac{1}{sinA}$,即AC=2cosA,
则AC的取值范围为($\sqrt{2}$.$\sqrt{3}$).
故选:C.
点评 此题考查了正弦定理,以及二倍角的正弦公式化简求值,本题的突破点是根据三角形为锐角三角形、内角和定理及B=2A变换角得到角的范围,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{2}$ | B. | 0 | C. | -$\frac{1}{2}$或0 | D. | 0或7 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若z1+z2=0,则z1,z2共轭 | B. | 若z1+z2=0,则${z_2},\overline{z_1}$共轭 | ||
| C. | 若z1-z2=0,则z1,z2共轭 | D. | 若z1-z2=0,则${z_2},\overline{z_1}$共轭 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com