【题目】已知函数
,
,其中
…是然对数底数.
(1)若函数
有两个不同的极值点
,
,求实数
的取值范围;
(2)当
时,求使不等式
在一切实数上恒成立的最大正整数
.
【答案】(1)
;(2)14
【解析】试题分析:(1)函数
有两个不同的极值点
,
得,
有两个不同的根
,对
分类讨论:当
时,可得
在
上递减,不合题意,
,函数
在
上递减,在
上递增,只需
,解出即可得出结果;(2)当
时,由题意可得:不等式
对题意
恒成立,令
,令
得
,利用单调性可得
,整理得
,再研究其单调性即可得出.
试题解析:(1)f′(x)=λex﹣2x,据题意得f′(x)=λex﹣2x=0有两个不同的根x1,x2,当λ≤0时,f′(x)=λex﹣2x≤0,因此f(x)在R上递减,不合题意,∴λ>0,又f″(x)=λex﹣2,令f″(x)=0,解得
,∴函数f′(x)=λex﹣2x在
上递减,在
上递增,∴f′(x)=λex﹣2x=0有两个不同的根,则
,即
,
,解得
.
(2)当λ=1时,求使不等式f(x)>g(x)在一切实数上恒成立,即不等式
对任意x恒成立,令
,∴
,令h′(x)=0得
,∴函数h(x)在
上递减,在
上递增,∴
,整理得
.令
,易得(μ)在(2,+∞)上递减,若μ=2e2∈(14,15),(2e2)=15﹣2e2>0,若μ=15,
,所以满足条件的最大整数μ=14.
科目:高中数学 来源: 题型:
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费
(单位:千元)对年销售量
(单位:
)和年利润
(单位:千元)的影响.对近8年的年宣传费
和年销售量
数据作了初步处理,得到下面的散点图及一些统计量的值.
![]()
表中
.
(1)根据散点图判断
与
哪一个适宜作为年销售量
关于年宣传费
的回归类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立
关于
的回归方程;
(3)已知这种产品的利润
与
的的关系为
.根据(2)的结果回答下列问题:
(ⅰ)年宣传费
时,年销售量及年利润的预报值是多少?
(ⅱ)年宣传费
为何值时,年利润的预报值最大?
附:对于一组数据
,其回归直线
的的斜率和截距的最小二乘估计为
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=4cosωxsin(ωx+
)+a(ω>0)图象上最高点的纵坐标为2,且图象上相邻两个最高点的距离为π. (Ⅰ)求a和ω的值;
(Ⅱ)求函数f(x)在[0,π]上的单调递减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=sin(ωx+φ)(ω>0,|φ|<
)的图象如图所示,为了得到g(x)=sinωx的图象,则只要将f(x)的图象( ) ![]()
A.向左平移
个单位长度
B.向右平移
个单位长度
C.向右平移
个单位长度
D.向左平移
个单位长度
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}是首项为正数的等差数列,a1a2=3,a2a3=15.
(1)求数列{an}的通项公式;
(2)设bn=(an+1)2
,求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司研发出一款产品,批量生产前先在某城市销售30天进行市场调查.调查结果发现:日销量
与天数
的对应关系服从图①所示的函数关系:每件产品的销售利润
与天数
的对应关系服从图②所示的函数关系.图①由抛物线的一部分(
为抛物线顶点)和线段
组成.
![]()
![]()
(Ⅰ)设该产品的日销售利润
,分别求出
,
,
的解析式,
(Ⅱ)若在30天的销售中,日销售利润至少有一天超过8500元,则可以投入批量生产,该产品是否可以投入批量生产,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图某综艺节目现场设有A,B,C,D四个观众席,现有由5不同颜色的马甲可供现场观众选择,同一观众席上的马甲的颜色相同,相邻观众席上的马甲的颜色不相同,则不同的安排方法种数为 . ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=
x3﹣x2+ax+m,其中a>0,如果存在实数t,使f′(t)<0,则f′(t+2)f′(
)的值( )
A.必为正数
B.必为负数
C.必为非负
D.必为非正
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com