精英家教网 > 高中数学 > 题目详情
已知曲线y=(a-3)x3+ln x存在垂直于y轴的切线,函数f(x)=x3-ax2-3x+1在[1,2]上单调递增,则a的取值范围为________.
(-∞,0]
由已知条件可得方程y′=3(a-3)x2=0(x>0),即3(a-3)x3+1=0有大于0的实数根,即得x3=->0,解得a<3,又由函数f(x)=x3-ax2-3x+1在[1,2]上单调递增,可得不等式f′(x)=3x2-2ax-3≥0在[1,2]上恒成立,即得a≤在[1,2]上恒成立,由函数y=x-在[1,2]上单调递增可得,该函数的最小值为0,∴a≤0,综上可得实数a的取值范围为(-∞,0].
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知
(1)若存在单调递减区间,求实数的取值范围;
(2)若,求证:当时,恒成立;
(3)设,证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)当时,求的极值;
(2)当时,讨论的单调性;
(3)若对任意的,恒有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

函数,其中为实常数。
(1)讨论的单调性;
(2)不等式上恒成立,求实数的取值范围;
(3)若,设。是否存在实常数,既使又使对一切恒成立?若存在,试找出的一个值,并证明;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax3x2cxd(acd∈R)满足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.
(1)求acd的值;
(2)若h(x)=x2bx,解不等式f′(x)+h(x)<0.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)=ax2bxc(abc∈R),若x=-1为函数f(x)ex的一个极值点,则下列图象不可能为yf(x)的图象是(  ).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=(ax2bxc)exf(0)=1,f(1)=0.
(1)若f(x)在区间[0,1]上单调递减,求实数a的取值范围;
(2)当a=0时,是否存在实数m使不等式2f(x)+4xexmx+1≥-x2+4x+1对任意x∈R恒成立?若存在,求出m的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若实数满足,则的最小值为(   )
A.B.2C.D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=cos(2x+1)的导数是(  )
A.y′=sin(2x+1)
B.y′=-2xsin(2x+1)
C.y′=-2sin(2x+1)
D.y′=2xsin(2x+1)

查看答案和解析>>

同步练习册答案