精英家教网 > 高中数学 > 题目详情
设函数f(x)=ax2bxc(abc∈R),若x=-1为函数f(x)ex的一个极值点,则下列图象不可能为yf(x)的图象是(  ).
D
h(x)=f(x)ex
h′(x)=(2axb)ex+(ax2bxc)ex
=(ax2+2axbxbc)ex.
x=-1为函数f(x)ex的一个极值点.
ca=0,∴ca.
f(x)=ax2bxa.
若方程ax2bxa=0有两根x1x2,则x1x2=1,D中图象一定不满足条件.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数为常数),直线与函数的图象都相切,且与函数图象的切点的横坐标为
(1)求直线的方程及的值;
(2)若 [注:的导函数],求函数的单调递增区间;
(3)当时,试讨论方程的解的个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)当时,求函数的单调区间;
(2)当时,若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知a,b为常数,a¹0,函数
(1)若a=2,b=1,求在(0,+∞)内的极值;
(2)①若a>0,b>0,求证:在区间[1,2]上是增函数;
②若,且在区间[1,2]上是增函数,求由所有点形成的平面区域的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义在(上的非负可导函数f(x)满足xf′(x),对任意正数,若满足,则必有(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=x3ax2bx(ab∈R),若yf(x)在区间[-1,2]上是单调减函数,则ab的最小值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知曲线y=(a-3)x3+ln x存在垂直于y轴的切线,函数f(x)=x3-ax2-3x+1在[1,2]上单调递增,则a的取值范围为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数的定义域为,部分对应值如下表, 的导函数的图象如图所示. 下列关于的命题:

-1
0
4
5

1
2
2
1

①函数的极大值点为
②函数上是减函数;
③如果当时,的最大值是2,那么的最大值为4;
④当时,函数个零点;
⑤函数的零点个数可能为0、1、2、3、4个.
其中正确命题的序号是                    

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在R上的函数满足:恒成立,若,则的大小关系为 ( )
A.B.
C.D.的大小关系不确定

查看答案和解析>>

同步练习册答案