精英家教网 > 高中数学 > 题目详情
设函数.
(1)当时,求函数的单调区间;
(2)当时,若恒成立,求的取值范围.
(1)函数单调增区间为,单调减区间为;(2).

试题分析:(1)此类题目考查利用导数研究函数的单调性,解法是:求函数的导数,令导数大于零,解得单调增区间(注意函数的定义域),令导数小于零,解得单调减区间(注意定义域);(2)先将不等式恒成立问题转化为恒成立问题,然后可用两种方法求出参数的范围,法一是:令,通过导数求出该函数的最小值,由这个最小值大于或等于0即可解出的取值范围(注意题中所给的);法二是:先分离参数得,再令,只须求出该函数的最小值,从而,同时结合题中所给的范围可得参数的取值范围.
试题解析:(1)函数的定义域为                  1分
           2分
时,为增函数
时,为减函数
时,为增函数
所以,函数单调增区间为,单调减区间为          5分
(2)因为
所以

法一:令            7分
所以
因为时是增函数                 8分
所以                       9分
又因为,所以,                   10分
所以为增函数
要使恒成立,只需           11分
所以                               12分
法二:因为,所以
              6
                        7分
             8分
因为,所以               9分
因此时,,那么上为增函数   10分
所以
所以                             12分.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知
(1)若存在单调递减区间,求实数的取值范围;
(2)若,求证:当时,恒成立;
(3)设,证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)若函数处取得极值,求实数的值;
(2)若,求函数在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
⑴当时,①若的图象与的图象相切于点,求的值;
上有解,求的范围;
⑵当时,若上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)=ax2bxc(abc∈R),若x=-1为函数f(x)ex的一个极值点,则下列图象不可能为yf(x)的图象是(  ).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=(ax2bxc)exf(0)=1,f(1)=0.
(1)若f(x)在区间[0,1]上单调递减,求实数a的取值范围;
(2)当a=0时,是否存在实数m使不等式2f(x)+4xexmx+1≥-x2+4x+1对任意x∈R恒成立?若存在,求出m的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax+ln xg(x)=ex.
(1)当a≤0时,求f(x)的单调区间;
(2)若不等式g(x)< 有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若实数满足,则的最小值为(   )
A.B.2C.D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知二次函数的导数,且的值域为,则的最小值为(   )
A.3B.C.2D.

查看答案和解析>>

同步练习册答案