精英家教网 > 高中数学 > 题目详情
已知函数.
(1)若函数处取得极值,求实数的值;
(2)若,求函数在区间上的最大值和最小值.
(1)(2)最小值,最大值29

试题分析:(1)先求导,因为是函数的极值点,则,即可求实数的值。(2)先求导再令导数等于0,导论导数的正负得函数的增减区间,根据函数的增减性可求其最值。
试题解析:解答:(1)∵函数
.                     2分
∵函数处取得极值,∴
,∴实数.               4分
经检验,当时,取得极小值,故.             6分
(2)当时,.
,∴.             8分
∵在区间上,;在区间上,
∴在区间上,函数单调递减;在区间上,函数单调递增.10分
.        11分
,∴.       12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax+ln x,其中a为常数,e为自然对数的底数.
(1)当a=-1时,求f(x)的最大值;
(2)当a=-1时,试推断方程|f(x)|=是否有实数解,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数为常数),直线与函数的图象都相切,且与函数图象的切点的横坐标为
(1)求直线的方程及的值;
(2)若 [注:的导函数],求函数的单调递增区间;
(3)当时,试讨论方程的解的个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)当时,求函数的单调区间;
(2)当时,若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数, 在处取得极小值2.
(1)求函数的解析式;
(2)求函数的极值;
(3)设函数, 若对于任意,总存在, 使得, 求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)设,求的最小值;
(Ⅱ)如何上下平移的图象,使得的图象有公共点且在公共点处切线相同.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=2ax--(2+a)lnx(a≥0)
(Ⅰ)当时,求的极值;
(Ⅱ)当a>0时,讨论的单调性;
(Ⅲ)若对任意的a∈(2,3),x­1,x2∈[1,3],恒有成立,求实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x∈(1,+∞).
(1)求函数f(x)的单调区间;
(2)函数f(x)在区间[2,+∞)上是否存在最小值,若存在,求出最小值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数()在区间上取得最小值4,则_      __.

查看答案和解析>>

同步练习册答案