精英家教网 > 高中数学 > 题目详情
已知
(1)若存在单调递减区间,求实数的取值范围;
(2)若,求证:当时,恒成立;
(3)设,证明:.
(1);(2)证明过程详见试题解析;(3)证明过程详见试题解析.

试题分析:(1)当时,. ∵ 有单调减区间,∴有解.分两种情况讨论有解.可得到的取值范围是;(2)此问就是要证明函数上的最大值小于或等于,经过求导讨论单调性得出当时,有最大值,命题得证;(3)利用(2)的结论,将此问的不等关系,转化成与(2)对应的函数关系进行证明.
试题解析:(1)当时,

有单调减区间,∴有解,即
,∴ 有解.
(ⅰ)当时符合题意;
(ⅱ)当时,△,即
的取值范围是.
(2)证明:当时,设
.

讨论的正负得下表:
 
∴当有最大值0.
恒成立.
∴当时,恒成立.
(3)证明:∵

 

 
由(2)有
.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数处取得极小值.
(1)若函数的极小值是,求
(2)若函数的极小值不小于,问:是否存在实数,使得函数上单调递减?若存在,求出的范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3ax2+bx.
(1)若a=2b,试问函数f(x)能否在x=-1处取到极值?若有可能,求出实数a,b的值;否则说明理由.
(2)若函数f(x)在区间(-1,2),(2,3)内各有一个极值点,试求w=a-4b的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax+ln x,其中a为常数,e为自然对数的底数.
(1)当a=-1时,求f(x)的最大值;
(2)当a=-1时,试推断方程|f(x)|=是否有实数解,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)当时,求函数的单调区间;
(2)当时,若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义在(上的非负可导函数f(x)满足xf′(x),对任意正数,若满足,则必有(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在R上的函数f(x)满足f(1)=1且对一切x∈R都有f′(x)<4,则不等式f(x)>4x-3的解集为(  )
A.(-∞,0)B.(0,+∞)C.(-∞,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=x3ax2bx(ab∈R),若yf(x)在区间[-1,2]上是单调减函数,则ab的最小值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知曲线y=(a-3)x3+ln x存在垂直于y轴的切线,函数f(x)=x3-ax2-3x+1在[1,2]上单调递增,则a的取值范围为________.

查看答案和解析>>

同步练习册答案