精英家教网 > 高中数学 > 题目详情
已知函数处取得极小值.
(1)若函数的极小值是,求
(2)若函数的极小值不小于,问:是否存在实数,使得函数上单调递减?若存在,求出的范围;若不存在,说明理由.
(1);(2)存在实数,满足题意.

试题分析:(1)对求导,得,结合已知条件可以列出方程组解这个方程组,可得的值,从而求得的解析式;(2)假设存在实数k,使得函数上单调递减.设=0两根为,则.由的递减区间为,由,解得的递减区间为.由条件有有这个条件组可求得的值.利用函数上单调递减,列出不等式组,即可求得的值.
试题解析:(1),由
解得                                      4分
检验可知,满足题意..                6分
(2)假设存在实数,使得函数上单调递减.设=0两根为,则.由的递减区间为,由,解得的递减区间为
由条件有,解得                                      10分
函数上单调递减.由.∴存在实数,满足题意.                                         12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)求函数的极值;
(2)定义:若函数在区间上的取值范围为,则称区间为函数的“域同区间”.试问函数上是否存在“域同区间”?若存在,求出所有符合条件的“域同区间”;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
(1)若存在单调递减区间,求实数的取值范围;
(2)若,求证:当时,恒成立;
(3)设,证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的图象与的图象关于直线对称。
(Ⅰ)若直线的图像相切, 求实数的值;
(Ⅱ)判断曲线与曲线公共点的个数.
(Ⅲ)设,比较的大小, 并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数y=x3-3x+c的图像与x轴恰好有两个交点,则c=            .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数yf(x)的图象关于y轴对称,且当x∈(-∞,0)时,f(x)+xf′(x)<0成立,a=(20.2f(20.2),b=(logπ3)·f(logπ3),c=(log39)·f(log39),则abc的大小关系是(  )
A.bacB.cab
C.cbaD.acb

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(x+2)为偶函数,f(4)=1,则不等式f(x)<ex的解集为(  )
A.(-2,+∞)B.(0,+∞)
C.(1,+∞)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)=sin x-cos x,则f等于 (  ).
A.0B.C.D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=cos(2x+1)的导数是(  )
A.y′=sin(2x+1)
B.y′=-2xsin(2x+1)
C.y′=-2sin(2x+1)
D.y′=2xsin(2x+1)

查看答案和解析>>

同步练习册答案