精英家教网 > 高中数学 > 题目详情
已知函数yf(x)的图象关于y轴对称,且当x∈(-∞,0)时,f(x)+xf′(x)<0成立,a=(20.2f(20.2),b=(logπ3)·f(logπ3),c=(log39)·f(log39),则abc的大小关系是(  )
A.bacB.cab
C.cbaD.acb
A
因为函数yf(x)关于y轴对称,所以函数yxf(x)为奇函数.因为[xf(x)]′=f(x)+xf′(x),且当x∈(-∞,0)时,[xf(x)]′=f(x)+xf′(x)<0,则函数yxf(x)在(-∞,0)上单调递减;因为yxf(x)为奇函数,所以当x∈(0,+∞)时,函数yxf(x)单调递减.因为1<20.2<2,0<logπ3<1,log39=2,所以0<logπ3<20.2<log39,所以bac,选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数处取得极小值.
(1)若函数的极小值是,求
(2)若函数的极小值不小于,问:是否存在实数,使得函数上单调递减?若存在,求出的范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax+ln x,其中a为常数,e为自然对数的底数.
(1)当a=-1时,求f(x)的最大值;
(2)当a=-1时,试推断方程|f(x)|=是否有实数解,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)当在区间上的最大值和最小值;
(Ⅱ)若在区间上,函数的图象恒在直线下方,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线yx2+1,求过点P(0,0)的曲线的切线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数f(x)=D是由x轴和曲线y=f(x)及该曲线在点(1,0)处的切线所围成的封闭区域,则z=x-2y在D上的最大值为    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3-3x.
(1)求函数f(x)的单调区间.
(2)求函数f(x)在区间[-3,2]上的最值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=f′(x)是函数y=f(x)的导函数,且函数y=f(x)在点P(x0,f(x0))处的切线为l:y=g(x)=f′(x0)·(x-x0)+f(x0),F(x)="f(x)-g(x)," 如果函数y=f(x)在区间[a,b]上的图象如图所示,且a<x0<b,那么(  )
A.F'(x0)=0,x=x0是F(x)的极大值点
B.F'(x0)=0,x=x0是F(x)的极小值点
C.F'(x0)≠0,x=x0不是F(x)的极值点
D.F'(x0)≠0,x=x0是F(x)的极值点

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数,若是奇函数,则+的值为 

查看答案和解析>>

同步练习册答案