精英家教网 > 高中数学 > 题目详情

已知在△ABC中,a,b,c分别是内角A,B,C的对边,且数学公式,a2b2cosC=a2+b2-c2,S△ABC=数学公式
(I)求证:△ABC为等腰三角形.
(II)求角A的值.

解:(I)证明:在△ABC中,∵,由正弦定理可得 ,∴sinBcosA=cosBsinA,∴sin(B-A)=0.
再由-π<A-B<π 可得 B-A=0,
∴△ABC为等腰三角形.
(II)∵a2b2cosC=a2+b2-c2,且 cosC=,∴ab•=a2+b2-c2,即 (ab-2)( a2+b2-c2)=0.
∴ab=2 或 a2+b2-c2 =0.
当 ab=2时,由S△ABC== 求得sinC=,∴C=,或 ,故 A=
当a2+b2-c2 =0,△ABC为等腰直角三角形,A=
综上可得,A=,或A=,或A=
分析:(I)在△ABC中,由 利用正弦定理可得sin(B-A)=0,可得 B-A=0,故△ABC为等腰三角形.
(II) 由余弦定理求出 cosC,代入a2b2cosC=a2+b2-c2可得 ab=2 或 a2+b2-c2 =0.ab=2时,由S△ABC= 求出A的值,可得C的值.当a2+b2-c2 =0,△ABC为等腰直角三角形,
从而求得A的值,综合可得结论.
点评:本题主要考查正弦定理和余弦定理的应用,已知三角函数值求角的大小,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在△ABC中,A>B,且tanA与tanB是方程x2-5x+6=0的两个根.
(Ⅰ)求tan(A+B)的值;
(Ⅱ)若AB=5,求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,a=2
3
,c=6,A=30°
,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,∠A=120°,记
α
=
BA
|
BA
|cosA
+
BC
|
BC
|cosC
β
=
CA
|CA|
cosA
+
CB
|
CB
|sinB
CB
|
CB
|cosB
,则向量
α
β
的夹角为
120°
120°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,a=2
3
,b=6,A=30°,解三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,a,b,c为内角A,B,C所对的边长,r为内切圆的半径,则△ABC的面积S=
1
2
(a+b+c)
•r,将此结论类比到空间,已知在四面体ABCD中,已知在四面体ABCD中,
S1,S2,S3,S4分别为四个面的面积,r为内切球的半径
S1,S2,S3,S4分别为四个面的面积,r为内切球的半径
,则
四面体ABCD的体积V=
1
3
(S1+S2+S3+S4).r
四面体ABCD的体积V=
1
3
(S1+S2+S3+S4).r

查看答案和解析>>

同步练习册答案