精英家教网 > 高中数学 > 题目详情

【题目】已知函数:f(x)=x2+bx+c,其中:0≤b≤4,0≤c≤4,记函数f(x)满足条件: 的事件为A,则事件A发生的概率为(
A.
B.
C.
D.

【答案】A
【解析】解:∵f(x)=x2+bx+c,
∴不等式 ,即 ,化简得
以b为横坐标、a为纵坐标建立直角坐标系,
将不等式组 对应的平面区域作出,如图所示
不等式组 对应图中的正方形ODEF,其中
D(0.4),E(4,4),F(4,0),O为坐标原点,可得S正方形ODEF=4×4=16
不等式组 对应图中的四边形OHGF,
可得S四边形OHGF=S正方形ODEF﹣SDHG﹣SEFG=16﹣2﹣4=10
∵事件A=
∴事件A发生的概率为P(A)= = =
故选:A

【考点精析】利用几何概型对题目进行判断即可得到答案,需要熟知几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图1,2,在Rt△ABC中,AB=BC=4,点E在线段AB上,过点E作交AC于点F,将△AEF沿EF折起到△PEF的位置(点A与P重合),使得∠PEB=60°.

(1)求证:EF⊥PB;
(2)试问:当点E在何处时,四棱锥P﹣EFCB的侧面的面积最大?并求此时四棱锥P﹣EFCB的体积及直线PC与平面EFCB所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是计算1+ + +…+ 的值的一个程序框图,其中判断框内应填的是(

A.i>10
B.i<10
C.i>20
D.i<20

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(1,sinx), =(cos(2x+ ),sinx),函数f(x)= cos2x
(1)求函数f(x)的解析式及其单调递增区间;
(2)当x∈[0, ]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知球内接四棱锥的高为相交于,球的表面积为,若中点.

(1)求证: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.

方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.

方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.

(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;

(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20名学生某次数学考试成绩(单位:分)的频率分布直方图如图:
(Ⅰ)求频率分布直方图中a的值;
(Ⅱ)分别求出成绩落在[50,60)与[60,70)中的学生人数;
(Ⅲ)从成绩在[50,70)的学生任选2人,求此2人的成绩都在[60,70)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体ABCD﹣A1B1C1D1 , 则过点A与AB、BC、CC1所成角均相等的直线有(
A.1条
B.2条
C.4条
D.无数条

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为.

(1)求圆的直角坐标方程;

(2)设圆与直线交于点,若点的坐标为,求的最小值.

查看答案和解析>>

同步练习册答案