精英家教网 > 高中数学 > 题目详情
已知曲线C的方程为
x2
|k|
+
y2
1-k
=1
,则当C为双曲线时,k的取值范围是
(1,+∞)
(1,+∞)
;当C为焦点在y轴上的椭圆时,k的取值范围是
(-∞,0)∪(0,
1
2
)
(-∞,0)∪(0,
1
2
)
分析:(1)根据曲线是椭圆时的双曲线的方程的特点是方程中y2的分母和x2分母异号,列出不等式组,求出k的范围.
(2)要使曲线是为焦点在y轴上的椭圆,方程中y2的分母1-k大于x2分母|k|,且都大于0,列出不等式组,求出k的范围.
解答:解:(1)曲线为双曲线?|k|(1-k)<0
?
k(1-k)<0
k>0
-k(1-k)<0
k<0

?k>1.即k的取值范围是(1,+∞).
(2)曲线为焦点在y轴上的椭圆?
|k|<(1-k)
|k|>0

?
k<(1-k)
k>0
-k<1-k
k<0

?k<0或0<k<
1
2

故答案为:(1,+∞),(-∞,0)∪(0,
1
2
)
点评:解决椭圆的方程,注意焦点的位置在哪个坐标轴上,方程中哪个字母的分母就大.本题还考查了双曲线的标准方程.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知曲线C的方程为
x=8t2
y=8t
(t
为参数),过点F(2,0)作一条倾斜角为
π
4
的直线交曲线C于A、B两点,则AB的长度为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C参数方程为
x=2cosθ
y=sinθ
,θ∈[0,2π)
,极点O与原点重合,极轴与x轴的正半轴重合.圆T的极坐标方程为ρ2+4ρcosθ+4=r2,曲线C与圆T交于点M与点N.
(Ⅰ)求曲线C的普通方程与圆T直角坐标方程;
(Ⅱ)求
TM
TN
的最小值,并求此时圆T的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•嘉定区一模)已知曲线C的方程为x2+ay2=1(a∈R).
(1)讨论曲线C所表示的轨迹形状;
(2)若a≠-1时,直线y=x-1与曲线C相交于两点M,N,且|MN|=
2
,求曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的方程为kx2+(4-k)y2=k+1(k∈R).
(1)若曲线C是椭圆,求k的取值范围;
(2)若曲线C是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程;
(3)满足(2)的双曲线上是否存在两点P、Q关于直线l:y=x-1对称,若存在,求出过P、Q的直线方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:海门市模拟 题型:填空题

已知曲线C的方程为
x=8t2
y=8t
(t
为参数),过点F(2,0)作一条倾斜角为
π
4
的直线交曲线C于A、B两点,则AB的长度为______.

查看答案和解析>>

同步练习册答案