| A. | $\frac{{\sqrt{3}}}{12}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{{10\sqrt{3}}}{11}$ | D. | $\frac{{5\sqrt{3}}}{11}$ |
分析 设直线OA的倾斜角为θ,则tanθ=$\frac{1}{4\sqrt{3}}$,再根据α=θ+$\frac{π}{6}$,求得tanα=tan(θ+$\frac{π}{6}$)的值.
解答 解:由题意,设直线OA的倾斜角为θ,则tanθ=$\frac{1}{4\sqrt{3}}$=$\frac{\sqrt{3}}{12}$,
α=θ+$\frac{π}{6}$,tanα=tan(θ+$\frac{π}{6}$)=$\frac{tanθ+tan\frac{π}{6}}{1-tanθ•tan\frac{π}{6}}$=$\frac{5\sqrt{3}}{11}$,
故选:D.
点评 本题主要考查任意角的三角函数的定义、两角和的正切公式的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{74}{25},22$) | B. | (-$\frac{74}{25},25$) | C. | (-2,2) | D. | (0,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 等腰三角形 | B. | 直角三角形 | ||
| C. | 等腰三角形或直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{1}{2}$或$\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$+$\overrightarrow{c}$ | B. | $\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$+$\overrightarrow{c}$ | C. | $\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$+$\overrightarrow{c}$ | D. | -$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$+$\overrightarrow{c}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com