精英家教网 > 高中数学 > 题目详情
19.设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是(  )
A.|f(x)|-g(x)是奇函数B.f(x)-|g(x)|是奇函数C.|f(x)|+g(x)是偶函数D.f(x)+|g(x)|是偶函数

分析 根据函数奇偶性的性质以及奇偶性的定义进行判断即可.

解答 解:∵f(x)和g(x)分别是R上的偶函数和奇函数,
∴f(-x)=f(x),g(-x)=-g(x),
则A.|f(-x)|-g(x)=|f(x)|-g(x),则|f(x)|-g(x)为非奇非偶函数.
B.f(-x)-|g(-x)|=f(x)-|-g(x)|=f(x)-|g(x)|,则f(x)-|g(x)|为偶函数.
C.|f(-x)|+g(-x)=|f(x)|-g(x),则|f(x)|+g(x)为非奇非偶函数.
D.f(-x)+|g(-x)|=f(x)+|-g(x)|=f(x)+|g(x)|,则f(x)+|g(x)|为偶函数,
故选:D.

点评 本题主要考查函数奇偶性的判断,根据函数奇偶性的定义和性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.1+(1+$\frac{1}{2}$)+(1+$\frac{1}{2}$+$\frac{1}{4}$)+…+(1+$\frac{1}{2}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{10}}$)的值为(  )
A.18+$\frac{1}{{2}^{9}}$B.20+$\frac{1}{{2}^{10}}$C.22+$\frac{1}{{2}^{11}}$D.18+$\frac{1}{{2}^{10}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设x为实数,[x]表示不大于x的最大整数,如[π]=3,$[{-1.3}]=-2,[{\frac{1}{2}}]=0$,则使[|x-1|]=1成立的x的取值范围是2≤x<3或-1<x≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.等差数列{an}中,a1,a4029是函数f(x)=$\frac{1}{3}$x3-4x2+6x-1的极值点,则log2a2015=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)计算${27}^{\frac{2}{3}}$-2log23•log2$\frac{1}{8}$+lg4+2lg5;
(2)已知tanx=-$\frac{1}{3}$,求$\frac{1}{2sinxcosx+co{s}^{2}x}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数f(x)=-x2+2bx-4与$g(x)=\frac{b}{x+1}$在区间[1,2]上都是减函数,则实数b的取值范围是(  )
A.(0,1)B.(0,1]C.(-1,0)∪(0,1)D.(-1,0)∪(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和,已知数列{an}是等和数列,且a1=2,公和为5,试求:
(1)a18的值;
(2)该数列的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在数列{an}中,已知对任意n∈N*,a1+a2+a3+…+an=3n-1,则a12+a22+a32+…+a102=(  )
A.(310-1)2B.$\frac{{{9^{10}}-1}}{2}$C.910-1D.$\frac{{{3^{10}}-1}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.命题“?x>0,ex<x+1”的否定是?x>0,ex≥x+1.

查看答案和解析>>

同步练习册答案