精英家教网 > 高中数学 > 题目详情

【题目】已知两条不重合的直线和两个不重合的平面,若,则下列四个命题:①若,则;②若,则; ③若,则;④若,则,其中正确命题的个数是( )

A. 0 B. 1 C. 2 D. 3

【答案】C

【解析】对于①,若,则,因为,所以,所以①正确;对于②,若时, ,不能推出,所以不能得出,②错误;对于③,若,则,而,由面面垂直的判定定理有,所以③正确;对于④,若,又, ,则的关系不能确定,可能平行,可能相交,可能异面,④错误.正确的有①③,故正确命题的个数为2.选C.

点睛:本题主要考查了立体几何中的线面位置关系,属于易错题.在①中考查了线面垂直的性质定理,线面垂直,则线线垂直;在②中,反例:见下图,直三棱柱中, 平面, ,但平面平面,故②是错误的; ③是考查面面垂直的判定定理;在④中, 直线的位置关系不能确定,可能平行,可能相交,可能异面.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】关于二项式(x1)2 013有下列命题:

(1)该二项展开式中非常数项的系数和是1

(2)该二项展开式中第六项为C2 0136x2 007

(3)该二项展开式中系数最大的项是第1 007项;

(4)x2 014时,(x1)2 013除以2 014的余数是2 013.

其中正确命题有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中, ,侧面为等边三角形, .

(Ⅰ)证明: 平面

(Ⅱ)求与平面所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列4个命题:

①“若成等比数列,则”的逆命题;

②“如果,则”的否命题;

③在中,“若”则“”的逆否命题;

④当时,若恒成立,则的取值范围是.

其中真命题的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,圆是以的中点为圆心, 为半径的圆.

(Ⅰ)若圆的切线在轴和轴上截距相等,求切线方程;

(Ⅱ)若是圆外一点,从向圆引切线 为切点, 为坐标原点,且有,求使最小的点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中有个黄色、个白色的乒乓球,做不放回抽样,每次任取个球,取次,则关于事件“直到第二次才取到黄色球”与事件“第一次取到白球的情况下,第二次恰好取得黄球”的概率说法正确的是( )

A. 事件“直到第二次才取到黄色球”与事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率都等于

B. 事件“直到第二次才取到黄色球”与事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率都等于

C. 事件“直到第二次才取到黄色球”的概率等于,事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率等于

D. 事件“直到第二次才取到黄色球”的概率等于,事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的上下两个焦点分别为 ,过点轴垂直的直线交椭圆两点, 的面积为,椭圆的离心力为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)已知为坐标原点,直线 轴交于点,与椭圆交于 两个不同的点,若存在实数,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为推行“高效课堂”教学法,某数学老师分别用传统教学和“高效课堂”两种不同的教学方法,在同一年级的甲、乙两个同层次的班进行教学实验,为了解教学效果,期末考试后, 分别从两个班级中各随机抽取20名学生的成绩进行统计,作出的茎叶图如图(记成绩不低于70分者为“成绩优良”).

(1)分别计算甲、乙两班20个样本中,数学成绩前十名的平均分,并大致判断那种教学方法的教学效果更佳;

(2)由以上统计数据填写下面列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方法有关”?

附:

独立性检验临界表:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分为14分)已知定义域为R的函数是奇函数.

1)求ab的值;

2)若对任意的t∈R,不等式ft22t)+f2t2k<0恒成立,求k的取值范围.

查看答案和解析>>

同步练习册答案