【题目】下列4个命题:
①“若
成等比数列,则
”的逆命题;
②“如果
,则
”的否命题;
③在
中,“若
”则“
”的逆否命题;
④当
时,若
对
恒成立,则
的取值范围是
.
其中真命题的序号是__________.
【答案】②,③
【解析】①“若a、G、b成等比数列,则G2=ab”的逆命题为“若G2=ab,则a、G、b成等比数列”,
不正确,比如a=G=b=0,则a、G、b不成等比数列,故①错;
②“如果x2+x60,则x>2”的否命题为“②“如果x2+x6<0,则x2”的否命题”,
由x2+x6<0,可得3<x<2,推得x2,故②对;
③在△ABC中,“若A>B”“a>b”“2RsinA>2RsinB”“sinA>sinB”(R为外接圆的半径)则其逆否命题正确,故③对;
④当0απ时,若8x2(8sinα)x+cos2α0对x∈R恒成立,即有△=64sin2α32cos2α0,
即有12cos2α0,即为cos2α
,可得
,
解得
,故④错。
故真命题的序号是②③。
科目:高中数学 来源: 题型:
【题目】4月23日是世界读书日,惠州市某中学在此期间开展了一系列的读书教育活动。为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查。下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,且将日均课外阅读时间不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”.
![]()
![]()
(Ⅰ)根据已知条件完成下面2×2列联表,并据此判断是否有99%的把握认为“读书迷”与性别有关?
(Ⅱ)将频率视为概率,现在从该校大量学生中用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中“读书迷”的人数为
,若每次抽取的结果是相互独立的,求
的分布列、数学期望
和方差
.
附: ![]()
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥
中,
平面
,底面
为直角梯形,
,
,
,且
为线段
上的一动点.
![]()
(Ⅰ)若
为线段
的中点,求证:
平面
;
(Ⅱ)当直线
与平面
所成角小于
,求
长度的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据已往经验,潜水员下潜的平均速度为
(米/单位时间),每单位时间的用氧量为
(升),在水底作业10个单位时间,每单位时间用氧量为
(升),返回水面的平均速度为
(米/单位时间),每单位时间用氧量为
(升),记该潜水员在此次考察活动中的总用氧量为
(升).
(1)求
关于
的函数关系式;
(2)若
,求当下潜速度
取什么值时,总用氧量最少.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的长轴长为
,
为坐标原点.
(1)求椭圆
的方程和离心率.
(2)设点
,动点
在
轴上,动点
在椭圆
上,且点
在
轴的右侧.若
,求四边形
面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知城
和城
相距
,现计划以
为直径的半圆上选择一点
(不与点
,
重合)建造垃圾处理厂.垃圾处理厂对城市的影响度与所选地点到城市的距离有关,对城
和城
的总影响度为对城
与城
的影响度之和.记点到
城
的距离为
,建在
处的垃圾处理厂对城
和城
的总影响度为
.统计调查表明:垃圾处理厂对城
的影响度与所选地点到城
的距离的平方成反比例关系,比例系数为4;对城
的影响度与所选地点到城
的距离的平方成反比例关系,比例系数为
.当垃圾处理厂建在
的中点时,对城
和城
的总影响度为0.065.
(1)将
表示成
的函数.
(2)讨论(1)中函数的单调性,并判断在
上是否存在一点,使建在此处的垃圾处理厂对城
和城
的总影响度最小?若存在,求出该点到城
的距离;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两条不重合的直线
和两个不重合的平面
,若
,则下列四个命题:①若
,则
;②若
,则
; ③若
,则
;④若
,则
,其中正确命题的个数是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以坐标原点
为极点,
轴的非负半轴为极轴建立极坐标系.已知点
的极坐标为
,曲线
的参数方程为
为参数).
(1)直线
过
且与曲线
相切,求直线
的极坐标方程;
(2)点
与点
关于
轴对称,求曲线
上的点到点
的距离的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com