精英家教网 > 高中数学 > 题目详情
已知F1,F2是双曲线的两个焦点,以线段F1F2为边作正△MF1F2,若边MF1的中点在此双曲线上,则此双曲线的离心率为______.
设双曲线的方程为
x2
a2
-
y2
b2
=1(a>0,b>0),
∵线段F1F2为边作正三角形△MF1F2
∴MF1=F1F2=2c,(c是双曲线的半焦距)
又∵MF1的中点A在双曲线上,
∴Rt△AF1F2中,AF1=c,AF2=
F1F22-AF12
=
3
c,
根据双曲线的定义,得2a=|AF1-AF2|=(
3
-1)c,
∴双曲线的离心率e=
2c
2a
=
2c
(
3-1
) c
=
3
+1.
故答案为:
3
+1.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1,F2分别为双曲
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点,P为双曲线左支上任一点,若
|PF2|2
|PF1|
的最小值为8a,则双曲线的离心率e的取值范围是(  )
A、(1,+∞)
B、(0,3]
C、(1,3]
D、(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是双曲
x2
9
-
y2
16
=1
的左、右两个焦点,点P是双曲线上一点,且|PF1|.|PF2|=32,求∠F1PF2的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知F1、F2是双曲数学公式的左、右两个焦点,点P是双曲线上一点,且|PF1|.|PF2|=32,求∠F1PF2的大小.

查看答案和解析>>

科目:高中数学 来源:2013年陕西省西安市西工大附中高考数学一模试卷(理科)(解析版) 题型:选择题

已知F1,F2分别为双曲的左、右焦点,P为双曲线左支上任一点,若的最小值为8a,则双曲线的离心率e的取值范围是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

科目:高中数学 来源:2012年陕西省西安市西工大附中高考数学四模试卷(理科)(解析版) 题型:选择题

已知F1,F2分别为双曲的左、右焦点,P为双曲线左支上任一点,若的最小值为8a,则双曲线的离心率e的取值范围是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

同步练习册答案