精英家教网 > 高中数学 > 题目详情
4.己知函数f(x)=loga(3x+1),g(x)=loga(1-3x),(a>0且a≠1).
(1)求函数F(x)=f(x)-g(x)的定义域;
(2)判断F(x)=f(x)-g(x)的奇偶性,并说明理由4;
(3)确定x为何值时,有f(x)-g(x)>0.

分析 (1)由真数大于零即可列出方程组$\left\{\begin{array}{l}{3x+1>0}\\{1-3x>0}\end{array}\right.$,解出即可;
(2)由F(-x)=loga(-3x+1)-loga(1+3x)=-F(x),再结合定义域即能得出答案.
(3)不等式f(x)-g(x)>0转化为loga(3x+1)>loga(1-3x),然后分当a>1时和0<a<1两种情况进行讨论,利用对数函数的单调性列出方程组即得答案.

解答 解:(1)F(x)=f(x)-g(x)=loga(3x+1)-loga(1-3x),
∴$\left\{\begin{array}{l}{3x+1>0}\\{1-3x>0}\end{array}\right.$,解得$-\frac{1}{3}<x<\frac{1}{3}$.
∴F(x)=f(x)-g(x)的定义域是(-$\frac{1}{3}$,$\frac{1}{3}$).
(2)由(1)知F(x)定义域关于原点对称,
∵F(x)=loga(3x+1)-loga(1-3x),
F(-x)=loga(-3x+1)-loga(1+3x)=-F(x).
∴F(x)=f(x)-g(x)是奇函数.
(3)∵f(x)-g(x)>0,
∴f(x)>g(x),
即 loga(3x+1)>loga(1-3x),
①当a>1时,$\left\{\begin{array}{l}{3x+1>1-3x}\\{-\frac{1}{3}<x<\frac{1}{3}}\end{array}\right.$,解得 0<x<$\frac{1}{3}$.
②当0<a<1时,$\left\{\begin{array}{l}{3x+1<1-3x}\\{-\frac{1}{3}<x<\frac{1}{3}}\end{array}\right.$,解得-$\frac{1}{3}<x<0$.
综上所述:当a>1时,f(x)-g(x)>0的解是0<x<$\frac{1}{3}$.
当0<a<1时,f(x)-g(x)>0的解是-$\frac{1}{3}<x<0$.

点评 本题考查了对数函数的定义域,单调性及奇偶性的判断和分情况讨论思想.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.下列4个命题:
①命题“若x2-x=0,则x=1”的逆否命题为“若x≠1,则x2-x≠0”;
②若“?p或q”是假命题,则“p且?q”是真命题;
③若p:x(x-2)≤0,q:log2x≤1,则p是q的充要条件;
④若命题p:存在x∈R,使得2x<x2,则?p:任意x∈R,均有2x≥x2
其中正确命题的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线2x-y+2=0和x+y+1=0的交点为P,直线l经过点P且与直线x+3y-5=0垂直,求直线l的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知棱长为2的正方体ABCD-A1B1C1D1,P是过顶点B,D,D1,B1圆上的一点,Q为CC1中点,则PQ与面ABCD所成角余弦值的取值范围是(  )
A.$[0,\frac{{\sqrt{5}}}{5}]$B.$[\frac{{\sqrt{5}}}{5},1]$C.$[\frac{{\sqrt{10}}}{5},1]$D.$[\frac{{\sqrt{15}}}{5},1]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=(x-2m)(x+m+3)(其中m<-1),g(x)=2x-2.
(1)若命题p:log2[g(x)]≥1是假命题.求x的取值范围;
(2)若命题q:x∈(-∞,3).命题r:x满足f(x)<0或g(x)<0为真命题.¬r是¬q的必要不充分条件,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.一种商品连续两次降价10%后,欲通过两次连续提价(每次提价幅度相同)恢复原价,则每次应提价11%.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=(2x-1)ex-mx+m.
(1)当m=0时,求函数f(x)在点P(2,f(2))处的切线方程.
(2)当m<1时,若存在唯一整数x0使得f(x0)<0,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知log277=a,log${\;}_{\frac{1}{3}}$$\frac{1}{5}$=b,则log8135=$\frac{3a+b}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=-x+log2$\frac{1-x}{1+x}$.
(1)求函数f(x)的定义域;
(2)当x∈[-$\frac{1}{2}$,$\frac{1}{2}$]时,求f(x)的最大值.

查看答案和解析>>

同步练习册答案