【题目】在平面直角坐标系中,曲线过点,其参数方程为(为参数,).以为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为
(1)求曲线的普通方程和曲线的直角坐标方程;
(2)已知曲线与曲线交于,两点,且,求实数的值.
科目:高中数学 来源: 题型:
【题目】在直角坐标系 中,曲线 的参数方程为 (为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线 的极坐标方程为 .
(1)求直线和曲线的普通方程;
(2)已知点,且直线和曲线交于两点,求 的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的长轴长是短轴长的两倍,焦距为.
(1)求椭圆的标准方程;
(2)不过原点的直线与椭圆交于两点、,且直线、、的斜率依次成等比数列,问:直线是否定向的,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现定义:设是非零实常数,若对于任意的,都有,则称函数为“关于的偶型函数”
(1)请以三角函数为例,写出一个“关于2的偶型函数”的解析式,并给予证明
(2)设定义域为的“关于的偶型函数”在区间上单调递增,求证在区间上单调递减
(3)设定义域为的“关于的偶型函数”是奇函数,若,请猜测的值,并用数学归纳法证明你的结论
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在开展学习强国的活动中,某校高三数学教师成立了党员和非党员两个学习组,其中党员学习组有4名男教师、1名女教师,非党员学习组有2名男教师、2名女教师,高三数学组计划从两个学习组中随机各选2名教师参加学校的挑战答题比赛.
(1)求选出的4名选手中恰好有一名女教师的选派方法数;
(2)记X为选出的4名选手中女教师的人数,求X的概率分布和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为降低雾霾等恶劣气候对居民的影响,某公司研发了一种新型防雾霾产品.每一台新产品在进入市场前都必须进行两种不同的检测,只有两种检测都合格才能进行销售,否则不能销售.已知该新型防雾霾产品第一种检测不合格的概率为,第二种检测不合格的概率为,两种检测是否合格相互独立.
(1)求每台新型防雾霾产品不能销售的概率;
(2)如果产品可以销售,则每台产品可获利40元;如果产品不能销售,则每台产品亏损80元(即获利元).现有该新型防雾霾产品3台,随机变量表示这3台产品的获利,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在区间上是增函数.
(1)求实数的值组成的集合;
(2)设关于的方程的两个非零实根为、.试问:是否存在实数,使得不等式对任意及 恒成立?若存在,求的取值范围;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com